Home
Class 12
MATHS
If sin^(-1) x+ tan^(-1)(1/2)=pi/2 then x...

If `sin^(-1) x+ tan^(-1)(1/2)=pi/2` then `x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)x+tan^(-1)x=(pi)/(2)

If sin^(-1)x + tan ^(-1) x = (pi)/(2) , then prove that 2x^(2) + 1 = sqrt(5)

If sin^(-1)x + tan ^(-1) x = (pi)/(2) , then prove that 2x^(2) + 1 = sqrt(5)

Let alpha is the solution of equation sin^(-1)(2sin^(-1)(cos^(-1)(tan^(-1)x)))=0 and beta is the solution of equation sin^(-1)x+sin^(-1)x^(2)=(pi)/(2), then -

If sin^(-1)x+tan^(-1)x=(pi)/(2) , prove that : 2x^(2)+1=sqrt(5)

tan^(-1)x+tan^(-1)(1)/(x)={[(pi)/(2), if x>0-(pi)/(2), if x<0

Statement-1: sin^(-1)tan((tan^(-1))x+tan^(-1)(1-x))] =(pi)/(2) has no non zero integral solution Statement-2: The greatest and least values of (sin^(-1)x)^(3)+(cos^(-1)x)^(3) are (7pi)^(3)/(8) and (pi)^(3)/(32) respectively