Home
Class 12
MATHS
If fundamental period of the functions f...

If fundamental period of the functions `f(x)=sin^2x+cos^4x` and `g(x)=cos(sin2x)+cos(cos2x)` are `lambda_1` and `lambda_2` respectively then `lambda_1/lambda_2=`

Answer

Step by step text solution for If fundamental period of the functions f(x)=sin^2x+cos^4x and g(x)=cos(sin2x)+cos(cos2x) are lambda_1 and lambda_2 respectively then lambda_1/lambda_2= by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The fundamental period of the function f(x)=|sin2x|+|cos2x| is

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

Knowledge Check

  • The period of the function f(x)=(sin x+sin 2x+sin 4x+sin 5x)/(cos x+cos 2x+cos 4x+cos 5x) is :

    A
    `pi/3`
    B
    `pi/4`
    C
    `pi`
    D
    None of these
  • The period of the function f(x)=( sin 8x cos x-sin 6x cos 3x )/(cos 2x cos x- sin 3x sin 4x ) is

    A
    `(pi)/4`
    B
    `(pi)/2`
    C
    `pi`
    D
    `(3pi)/2`
  • Similar Questions

    Explore conceptually related problems

    f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

    f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

    f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

    The period of the function f(x)=(1)/(2)((|sin x|)/(cos x)+(sin x)/(|cos x|)) is

    The period of the function f(x)=(sin x+sin 2x+sin 4x+sin 5x)/(cos x+cos 2x+cos 4x+cos 5x) is :

    The periodic function f(x)=a sin lambda x+b cos lambda x is