Home
Class 12
MATHS
If f(2a-x)=-f(x), prove that int0^(2a)f(...

If `f(2a-x)=-f(x),` prove that `int_0^(2a)f(x)dx=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f is an integrable function such that f(2a-x)=f(x), then prove that int_0^(2a)f(x)dx=2int_0^af(x)dx

If f is an integrable function such that f(2a-x)=f(x), then prove that int_0^(2a)f(x)dx=2int_0^af(x)dx

If f(2a-x)=-f(x) , then show that, int_(0)^(2a)f(x)dx=0

Prove that int_0^(2a) f(x)/(f(x)+f(2a-x))dx=a

Prove that int_0^(2a) f(x)/(f(x)+f(2a-x))dx=a

If f(x)=f(a+x) then show that int_(0)^(2a)f(x)dx=2int_(0)^(a)f(x)dx .

If a is a fixed real number such that f(a-x)+f(a+x)=0, then int_(0)^(2a) f(x) dx=

If a is a fixed real number such that f(a-x)+f(a+x)=0, then int_(0)^(2a) f(x) dx=

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=