Home
Class 11
MATHS
If alpha,beta are the roots of the quadr...

If `alpha,beta` are the roots of the quadratic equation `x^2-2(1-sin2theta)x-2 cos^2(2theta) = 0` , then the minimum value of `(alpha^2+beta^2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the quadratic equation x^(2)-2(1-sin2 theta)x-2cos^(2)(2 theta)=0, then the minimum value of (alpha^(2)+beta^(2)) is equal to

If alpha, beta are the roots of the quadratic equation x^(2)-2(1-sin 2theta) x-2 cos^(2) 2 theta=0, (theta in R) then find the minimum value of (alpha^(2)+beta^(2)) .

If alpha,beta are the roots of the quadratic equation x^(2)+2(1-cos3 theta)x-2sin^(2)3 theta=0(theta varepsilon R) then the maximum value of alpha^(2)+beta^(2) is equal to (i)0(ii)4(iii) 8 (iv) 16

If alpha,beta are the roots of the quadratic equation x^2-(a-2)x-(a+1)=0 , where a is a variable, then the least value of alpha^2+beta^2 is

If alpha and beta are the roots of the equation (1)/(2)x^(2)-sin2 theta x+cos2 theta=0, then the value of (1)/(alpha)+(1)/(beta) is:

If alpha & beta are the roots of the quadratic equation x^(2)-(k-2)x-k+1=0 , then minimum value of alpha^(2)+beta^(2) is

If alpha & beta are the roots of the quadratic equation x^(2)-(k-2)x-k+1=0 ,then minimum value of alpha^(2)+beta^(2) is

If alpha and beta are the roots of quadratic equation x^2+5x-1=0 then, find alpha^2+beta^2

If alpha and beta are the roots of the quadratic equation x^2-3x-2=0 , then alpha/beta+beta/alpha=

If alpha and beta are the roots of the quadratic equation x^(2)-3x-2=0, then (alpha)/(beta)+(beta)/(alpha)=