Home
Class 12
MATHS
Let z = x + iy. If |z – 2| = 2|z - 1|, t...

Let `z = x + iy.` If `|z – 2| = 2|z - 1|`, then `|z|^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z=x+iy. If |z2|=2|z-1|, then |z|^(2)

If z =x +iy satisfies |z+1-i|=|z-1+i| then

If z = x + iy such that cos z = 2, then z =

If z = x + iy is a complex number such that |z + 2| = |z - 2|, then the locus of z is

Obtain the Cartesian equation for the locus of z = x + iy in each of the cases: | z - 4|^(2) - |z-1|^(2) = 16

If z = x + iy and |z+6| = |2z+3| , prove that x^2+y^2 =9.

If z = x + iy and |2z+1|=|z-2i| ,then show that 3(x^(2)+y^(2))+4(x+y)=3

If z = x + iy is a complex numbers z for which |z +i//2|^(2) = |z - i//2|^(2) then the locus of z is