Home
Class 11
MATHS
If S is the circumcentre, G is centroid...

If S is the circumcentre, G is centroid and O is orthocentre of` triangle ABC ` respectively, then `(vec(OA) + vec(OB) +vec(OC))` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: vec(OA) +vec(OB)+vec(OC)=vec(OO')

If O is the circumcentre,G is the centroid and O' is orthocentre or triangle ABC then prove that: vec OA+vec OB+vec OC=vec OO

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If S is the circumcentre, G the centroid, O the orthocentre of Delta ABC, then vec(S)A + vec(S)B + vec(S)C =

If O is the circumcentre and P the orthocentre of Delta ABC , prove that vec(OA)+ vec(OB) + vec(OC) =vec(OP) .

If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC)=vec(0) .

If S is the circumcentre, O is the orthocentre of Delta ABC then vec(O)A + vec(O)B + vec(O)C =

If O and H be the circumcentre and orthocentre respectively of triangle ABC, prove that vec OA+ vec OB+ vec OC= vec OH .