Home
Class 11
MATHS
Le a1, a2, a3, ,a(11) be real numbers ...

Le `a_1, a_2, a_3, ,a_(11)` be real numbers satisfying `a_1=15 , 27-2a_2>0a n da_k=2a_(k-1)-a_(k-2)` for `k=3,4, , 11.` If `(a1 2+a2 2+...+a 11 2)/(11)=90 ,` then the value of `(a1+a2++a 11)/(11)` is equals to _______.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_1, a_2, a_3, ,a_(11) be real numbers satisfying a_1=15 , 27-2a_2>0 a n da_k=2a_(k-1)-a_(k-2) for k=3,4, , 11. If (a1 2+a2 2+...+a 11 2)/(11)=90 , then the value of (a1+a2++a 11)/(11) is equals to _______.

Let a_1, a_2, a_3, ,a_(11) be real numbers satisfying a_1=15 , 27-2a_2>0 a n da_k=2a_(k-1)-a_(k-2) for k=3,4, , 11. If (a1 2+a2 2+...+a 11 2)/(11)=90 , then the value of (a1+a2++a 11)/(11) is equals to _______.

Le a_1, a_2, a_3, ,a_(11) be real numbers satisfying a_2=15 , 27-2a_2>0a n da_k=2a_(k-1)-a_(k-2) for k=3,4, , 11. If (a1 2+a2 2+...+a 11 2)/(11)=90 , then the value of (a1+a2++a 11)/(11) is equals to _______.

Let a_1, a_2, a_3, ,a_(11) be real numbers satisfying a_1=15 , 27-2a_2>0 and a_k=2a_(k-1)-a_(k-2) for k=3,4, , 11. If (a_1^2+a_2^2+...+a_11^2)/(11)=90 , then the value of (a1+a2++a 11)/(11) is equals to _______.

Le a_(1),a_(2),a_(3),a_(11) be real numbers satisfying a_(1)=15,27-2a_(2)>0 anda_ =2a_(k-1)-a_(k-2) for k=3,4,11. If (a12+a22+...+a112)/(11)=90, then the value of (a1+a2++a11)/(11) is equals to

Let a1,a2,a3 ...... a11 be real numbers satisfying a_1 =15, 27-2a_2 > 0 and a_k= 2a_(k-1) - a_(k-2) for k=3,4,.....11 If (a1^2 +a2^2.......a11^2)/11 = 90 then find the value of (a_1+a_2....+a_11)/11

Let a1,a2,a3 ...... a11 be real numbers satisfying a_1 =15, 27-2a_2 > 0 and a_k= 2a_(k-1) - a_(k-2) for k=3,4,.....11 If (a1^2 +a2^2.......a11^2)/11 = 90 then find the value of (a_1+a_2....+a_11)/11

Let a1,a2,a3 ...... a11 be real numbers satisfying a_1 =15, 27-2a_2 > 0 and a_k= 2a_(k-1) - a_(k-2) for k=3,4,.....11 If (a1^2 +a2^2.......a11^2)/11 = 90 then find the value of (a_1+a_2....+a_11)/11

Let a_1,a_2,a_3,.......a_11 be real number satisfying a_1=15,27-2a_2gt0 anda_k=2a_(k-1)-a_(k-2) for k=3,4,.....11. If (a_1^2+a_2^2+......a_11^2)/11=90, then the value of (a_1 +a_2+.....a_11)/11 is equal to

If a_(n) = n(n!) , then what is a_1 +a_2 +a_3 +......+ a_(10) equal to ?