Home
Class 12
MATHS
" 24.If "x=cos theta,y=sin^(3)theta," sh...

" 24.If "x=cos theta,y=sin^(3)theta," show that "y(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=3sin^(2)theta(5cos^(2)theta-1)" iHe "

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=cos theta,y=s in^(3)theta, prove that y(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=3s in^(2)theta(5cos^(2)theta-1)

If x=cos theta,y sin^(3)theta, prove that y(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=3sin^(2)theta(5cos^(2)theta-1)

If x=costheta,y=sin^3theta,"prove that" y(d^2y)/(dx^2)+((dy)/(dx))^2=3sin^2theta(5cos^2theta-1)dot

If x= cos theta , y= sin^3 theta , show that y( d^2 y)/(d x^2 ) + (dy/dx)^2 = 3 sin^2 theta (5 cos^2 theta - 1)

If x= cos theta , y= sin^3 theta , show that y ( d^2 y)/(d x^2 ) + (dy/dx)^2 = 3 sin^2 theta (5 cos^2 theta - 1)

If x=cos theta,y=sin5 theta then (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=

If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((dy)/(dx))^(2)|at theta=(pi)/(2) is:

If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((dy)/(dx))^(2)|at theta=(pi)/(2) is:

If x =theta -sin theta ,y=1-cos theta,then (d^(2)y)/(dx^(2))=