Home
Class 11
MATHS
A discontinuous function y = f(x) satis...

A discontinuous function `y = f(x)` satisfying `x^2 + y^2= 4` is given by `f(x) = ....`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of discontinuous functions =f(x) on [-2,2] satisfying x^(2)+y^(2)=4

Let 'f' be a non-zero real valued continuous function satisfying f(x + y) = f(x), f(y) . f(y) for all x, y in R if f(2) = 9 , then f(6) =

A function y=f(x) satisfying f'(x)=x^(-(3)/(2)),f'(4)=2 and f(0)=0 is

A function y = f(x) satisfies the condition f(x+(1)/x) =x^(2)+1/(x^2)(x ne 0) then f(x) = ........

Given the function f (x) =(a ^(x) + a ^(-x))/(2), a gt 2, then f (x+y) + f(x -y) =

Given the function f (x) =(a ^(x) + a ^(-x))/(2), a gt 2, then f (x+y) + f(x -y) =

A function f : R -> R^+ satisfies f(x+y)= f(x) f(y) AA x in R If f'(0)=2 then f'(x)=

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?