Home
Class 12
MATHS
(x+1)y'=2e^(-y)-1,y(0)=0...

(x+1)y'=2e^(-y)-1,y(0)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following initial value problems and find the corresponding solution curves : (x+1)y'=2 e^(-y)-1, y(0)=0 .

Find the particular solution of the following : (x+1)(dy)/(dx)=2e^(-y)-1,y(0)=0 .

Solve the initial value problem: (x+1)(dy)/(dx)=2e^(-y)-1,\ y(0)=0

Solve the following initial value problem: (x+1)(dy)/(dx)=2e^(-y)-1,y=(0)=0

Solve the following differential equation (5) (x+1)dy/dx-1=2e^(-y),y=0, when x=1,y=0.

(x+1)(dy)/(dx) -1 = 2e^(-y) , y=0, " when " x=1

If dy/dx=(y+1)[(y+1)e^(x^2/2)-x] , y(0)=2 then y'(1) is equal to

Solve (1+2e^(x//y))dx+2e^(x//y)(1-x//y)dy=0.

Solve (1+2e^(x/y))dx+2e^(x/y)(1-x/y)dy=0