Home
Class 9
MATHS
PRove that (2^(30)+2^(29)+2^(28))/(2^(31...

PRove that `(2^(30)+2^(29)+2^(28))/(2^(31)+2^(30)-2^(29))=7/10`

Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of last 30 coefficients in the binomial expansion of (1+x)^(59) is a) 2^(29) b) 2^(59) c) 2^(58) d) 2^(59)-2^(29)

(21)/(x^(2))-(29)/(x)-10=0

Prove that : cos^(2)30^(@)-sin^(2)30^(@)=cos60^(@)

Prove that : cos^(2)30^(@)-sin^(2)30^(@)=cos60^(@)

Prove that : sin(2 times 30^(@))=(2tan30^(@))/(1+tan^(2)30^(@))

Prove that : sin(2 times 30^(@))=(2tan30^(@))/(1+tan^(2)30^(@))

Prove that : tan(2 times 30^(@))=(2tan30^(@))/(1-tan^(2)30^(@))

Prove that : tan(2 times 30^(@))=(2tan30^(@))/(1-tan^(2)30^(@))

Prove that cos 60^(@)=cos^(2)30^(@)-sin^(2)30^(@) .

Prove that sin^2 30^@ + cos^2 30^@=1