Home
Class 11
MATHS
Two of the lines represented by the equa...

Two of the lines represented by the equation `a y^4 + b x y^3 + c x^2 y^2 + d x^3 y + e x^4 = 0` will be perpendicular, then (a) `(b+d) (ad+be) +(e-a)^2(a+c-e)=0` (b) `(b+d)(ad+be)+(e+a)^2(a+c+e)=0` (c) `(b-d)(ad-be)+(e-a)^2(a+c+e)=0` (d) `(b-d)(ad-be)+(e+a)^2(a+c+e)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The degree of the differential equation, e^(((d^3y)/(dx^3))^2)+x(d^2y)/(dx^2)+y=0 is 1 (b) 2 (c) 0 (d) not defined

If (a + b e^(x))/(a-b e^(x)) = (b + c e^(x))/(b- c e^(x))= (c + d e^(x))/(c- d e^(x)) then a, b, c, d are in

The area bounded by the curve y=x(1-log_(e)x) and x-axis is (a) (e^(2))/(4) (b) (e^(2))/(2) (c) (e^(2)-e)/(2) (d) (e^(2)-e)/(4)

The solution of the differential equation (dy)/(dx) = (3e^(2x) + 3e^(4x) )/( e^(x) + e^(-x) ) is a) y= e^(3x) + C b) y=2e^(2x) + C c) y= e^(x) + C d) y= e^(4x) + C

The area bounded by the curve y=x(1-log_(e)x) and x-axis is a) (e^(2))/(4) b) (e^(2))/(2) c) (e^(2)-e)/(2) d) (e^(2)-e)/(4)

The general solution of the differential equation (dy)/(dx) = e^(y) (e^(x) + e^(-x) + 2x) is a) e^(-y) = e^(x) - e^(-x) + x^(2) + C b) e^(-y) = e^(-x) - e^(x) - x^(2) + C c) e^(-y) = -e^(-x) - e^(x) - x^(2) + C d) e^(y) = e^(-x) + e^(x) + x^(2) + C

The slope of the tangent to the curve y=e^(2x) at (0,1) is.....a)1 b)2 c)0 d)-1

If (x^2+y^2)dy=xydx and y(1)=1 . If y(x_0)=e then x_0 is equal to (A) sqrt(2)e (B) sqrt(3)e (C) 2e (D) e

The curves y=a e^x and y=b e^(-x) cut orthogonally, if (a) a=b (b) a=-b (c) a b=1 (d) a b=2