Home
Class 10
MATHS
" (g) "(1)/(1+a^(m-n))+(1)/(1+a^(n-m))=1...

" (g) "(1)/(1+a^(m-n))+(1)/(1+a^(n-m))=1

Promotional Banner

Similar Questions

Explore conceptually related problems

What is ( 1)/( a^(m-n)-1) + ( 1)/( a^(n-m)-1) equal to ?

lim_(x rarr0)((2^(m)+x)^((1)/(m))-(2^(n)+x)^((1)/(n)))/(x) is equal to (1)/(m2^(m))-(1)/(n2^(n)) (b) (1)/(m2^(m))+(1)/(n2^(n))(1)/(m2^(-m))-(1)/(n2^(-n))( d) (1)/(m2^(-m))+(1)/(n2^(-n))

Simplify the following: 1/(1+x^(m-n)+x^(m-p))+(1)/(1+x^(n-p)+x^(n-m))+(1)/(1+x^(n-m)+x^(p-n))

("lim")_(xvec 0)((2^m+x)^(1/m)-(2^n+x)^(1/n))/xi se q u a lto 1/(m2^m)-1/(n2^n) (b) 1/(m2^m)+1/(n2^n) 1/(m2^(-m))-1/(n2^(-n)) (d) 1/(m2^(-m))+1/(n2^(-n))

("lim")_(xto0)((2^m+x)^(1/m)-(2^n+x)^(1/n))/x is equal t o (a) 2 (1/(m2^m)-1/(n2^n))' (b) (1/(m2^m)+1/(n2^n)) (c) 1/(m2^(-m))-1/(n2^(-n)) (d) 1/(m2^(-m))+1/(n2^(-n))

Simplify : (1)/(1+x^(m-n)+x^(m-p))+(1)/(1+x^(n-p)+x^(n-m))+(1)/(1+x^(p-m)+x^(p-n)) .

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0 . int_(0)^(1)(x^(m-1)+x^(n-1))/((1+x)^(m+n))dx=

Show that : ((a^(m))/(a^(-n)))^(m-n)xx((a^(n))/(a^(-1)))^(n-1)xx((a^(l))/(a^(-m)))^(l-m)=1