Home
Class 12
MATHS
" 7.If "f(x)=cos(log x)" ,then show that...

" 7.If "f(x)=cos(log x)" ,then show that "f((1)/(x))f((1)/(y))-(1)/(2)(f((x)/(y))+f(x))=

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos(logx) , then show that f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0

If f(x)=cos(logx) , then prove that f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0

If f(x) = cos(log x) , then f((1)/(x)) f((1)/(y) - (1)/(2)[f((x)/(y)) + f(xy)] =

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x) = cos(log_ex) then show that f(x).f(y)-1/2[f(xy) + f(x/y)]=0

If f(x)=cos(log x), " then " f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)] has the value

If f(x)=log(x/(x-1)) , show that f(x+1)+f(x)=log ((x+1)/(x-1))

If f(x)=cos(logx) ,show that f(x)f(y)-1/2 [ f (x/y) + f(xy) ]=0