Home
Class 10
MATHS
Prove the following trigonometric identi...

Prove the following trigonometric identities: `tantheta-cottheta=(2sin^2theta-1)/(sinthetacostheta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following trigonometric identities: tan theta-cot theta=(2sin^(2)theta-1)/(sin theta cos theta)

Prove the following trigonometric identities: cottheta-tantheta=(2cos^2theta-1)/(sinthetacostheta)

Prove the following trigonometric identities: cottheta-tantheta=(2cos^2theta-1)/(sinthetacostheta)

Prove the following trigonometric identities: cot theta-tan theta=(2cos^(2)theta-1)/(sin theta cos theta)

Prove the following trigonometric identities: (tantheta+sintheta)/(tantheta-sintheta)=(sectheta+1)/(sectheta-1)

Prove the following trigonometric identities: (tan theta+sin theta)/(tan theta-sin theta)=(sec theta+1)/(sec theta-1)

Prove the following trigonometric identities: (sin theta)/(1-cos theta)=cos ec theta+cot theta

Prove the following trigonometric identities : cot^2theta-1/(sin^2theta)=-1 (ii) (1+tan^2theta)(1+sintheta)(1-sintheta)=1

Prove the following trigonometric identities: cot^(2)theta-(1)/(sin^(2)theta)=-1 (ii) (1+tan^(2)theta)(1+sin theta)(1-sin theta)=1

Prove the following : (All angles are acute angles.) tantheta-cottheta=(2sin^(2)theta-1)/(sinthetacostheta)