Home
Class 12
MATHS
cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(...

cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cot^(-1) ((sqrt(1+sin x) +sqrt(1-sin x))/(sqrt(1+sin x) -sqrt(1-sinx)))=(x)/(2), x in (0, (pi)/(4)) .

Prove that cot^(-1)((sqrt(1+sin)+sqrt(1-sin x))/(1sqrt(1+sin)-sqrt(1-sin x)))=(x)/(2);x in(0,(pi)/(4))

(d)/(dx) [ 2 cot^(-1) ((sqrt(1+ sin x) + sqrt(1-sin x))/(sqrt(1+ sin x) - sqrt(1-sin x)))]=

Differentiate w.r.t x the function 0 lt x lt (pi)/(2), cot^(-1) [(sqrt(1 + sin x) + sqrt(1-sin x))/(sqrt(1+ sin x)-sqrt(1-sin x))]

If y=cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))](0

Differentiate w.r.t x the functions cot ^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]

Prove that: *cot^(^^)(-1){(sqrt(1+sin x)+sqrt(1-sin x)/(sqrt(1+sin x)-sqrt(1-sin x))}=pi/2-x/2,| ifpil 2

Find the value of cot^(-1)[(sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x))]