Home
Class 8
MATHS
243^(2/5)...

243^(2/5)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (i) log(1^(1/5)+32^(1/5)+243^(1/5))=1/5(log1 + log 32 + log 243) .

Simplify : ((25)^(3/2)*(243)^(3/5))/((16)^(5/4)*(8)^(4/3))

Simplify : ((25)^(3/2)*(243)^(3/5))/((16)^(5/4)*(8)^(4/3))

Simplify: (i)\ ((25)^(3/2)\ xx\ (243)^(3/5))/((16)^(5/4)\ xx\ (8)^(4/3))

Evaluate each of the following : (i)16^(1//2)" "(ii)243^(1//5)" "(iii)81^(1//4)

The value of ((243)^(n/5). 3^(2n+1))/(9^(n).3^(n-1)) is:

Evaluate each of the following : (i)16^(1//2)" "(ii)243^(1//5)" "(iii)81^(1//4)

The value of (((243)^(5))^(4))/(((32)^(4))^(5)) is

Solve the following expressions. (243)^(4/5)

3a^(2)b-243ab^(2)