Home
Class 14
MATHS
The value of (0.1 xx 0.1 xx 0.1 + 0.02 ...

The value of ` (0.1 xx 0.1 xx 0.1 + 0.02 xx 0.02 xx 0.02)/( 0.2 xx 0.2 xx 0.2 + 0.04 xx 0.04 xx 0.04) ` is :

A

`0.0125`

B

`0.125 `

C

`0.25`

D

`0.5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{0.1^3 + 0.02^3}{0.2^3 + 0.04^3} \), we can follow these steps: ### Step 1: Calculate the numerator The numerator is \( 0.1^3 + 0.02^3 \). - First, calculate \( 0.1^3 \): \[ 0.1^3 = 0.1 \times 0.1 \times 0.1 = 0.001 \] - Next, calculate \( 0.02^3 \): \[ 0.02^3 = 0.02 \times 0.02 \times 0.02 = 0.000008 \] - Now, add these two results together: \[ 0.001 + 0.000008 = 0.001008 \] ### Step 2: Calculate the denominator The denominator is \( 0.2^3 + 0.04^3 \). - First, calculate \( 0.2^3 \): \[ 0.2^3 = 0.2 \times 0.2 \times 0.2 = 0.008 \] - Next, calculate \( 0.04^3 \): \[ 0.04^3 = 0.04 \times 0.04 \times 0.04 = 0.000064 \] - Now, add these two results together: \[ 0.008 + 0.000064 = 0.008064 \] ### Step 3: Form the fraction Now we can form the fraction: \[ \frac{0.001008}{0.008064} \] ### Step 4: Simplify the fraction To simplify the fraction, we can divide both the numerator and the denominator by \( 0.001008 \): \[ \frac{0.001008 \div 0.001008}{0.008064 \div 0.001008} = \frac{1}{8} \] ### Step 5: Convert to decimal Now convert \( \frac{1}{8} \) to decimal: \[ \frac{1}{8} = 0.125 \] ### Final Answer Thus, the value of the expression is \( 0.125 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

0.4 xx 0.4 xx 0.4 = ?

(0.1 xx 0.1 xx 0.1 + 0.04 xx 0.04 xx 0.04) div (0.2 xx 0.2 xx 0.2 + 0.08 xx 0.08 xx 0.08) = _________

0.04xx0.04xx0.04= ?

0.2 xx 0.3 = 0.6