Home
Class 14
MATHS
Given that 1^(2) + 2^(2) + 3^(2) + ... ...

Given that ` 1^(2) + 2^(2) + 3^(2) + ... + 20^(2) = 2870`, the value of ` (2^(2) + 4^(2) + 6^(2) + ... + 40^(2))` is :

A

11480

B

5740

C

28700

D

2870

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the sum \(2^2 + 4^2 + 6^2 + ... + 40^2\). ### Step-by-step Solution: 1. **Identify the Series**: The series \(2^2 + 4^2 + 6^2 + ... + 40^2\) can be rewritten in terms of \(n\): \[ 2^2 + 4^2 + 6^2 + ... + 40^2 = (2 \cdot 1)^2 + (2 \cdot 2)^2 + (2 \cdot 3)^2 + ... + (2 \cdot 20)^2 \] This means we are summing the squares of the first 20 even numbers. 2. **Factor Out the Common Term**: We can factor out \(2^2\) from the series: \[ = 2^2 \cdot (1^2 + 2^2 + 3^2 + ... + 20^2) \] 3. **Use the Given Information**: We know from the problem statement that: \[ 1^2 + 2^2 + 3^2 + ... + 20^2 = 2870 \] So we can substitute this value into our equation: \[ = 4 \cdot 2870 \] 4. **Calculate the Final Value**: Now, we perform the multiplication: \[ 4 \cdot 2870 = 11480 \] Thus, the value of \(2^2 + 4^2 + 6^2 + ... + 40^2\) is **11480**.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (9^(2)+40^(2))^(3/2)=

Given that (1^(2)+2^(2)+3^(2)+......+10^(2))=385, the value of (2^(2)+4^(2)+6^(2)+....+20^(2)) is equal to

If 1^(2) + 2^(2) + 3^(3)+ 4^(2) + …….. + 10^(2) = 385 then find the value of 2^(2) + 4^(2) + 6^(2) + ………. + 20^(2)

Given that 1^(2) + 2^(2) + 3^(2) + …. + n^(2) = (n)/(6) (n + 1) (2n + 1) , then 10^(2) + 11^(2) + 12^(2) + … + 20^(2) is equal to

IF S=1^(2)+3^(2)+5^(2).....99^(2) then the value of the sum 2^(2)+4^(2)+6^(2)...100^(2)

The value of (1^2 - 2^2 + 3^2 - 4^2 +5^2 -6^2 +.....+ 9^2 - 10^2) is