Home
Class 14
MATHS
The value of 0.bar2 + 0.bar3 + 0.bar(32...

The value of ` 0.bar2 + 0.bar3 + 0.bar(32)` is :

A

`0. bar(87)`

B

`0.bar(77)`

C

`0.bar(82)`

D

`0.bar(86)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( 0.\overline{2} + 0.\overline{3} + 0.\overline{32} \), we will follow these steps: ### Step 1: Convert the repeating decimals to fractions 1. **Convert \( 0.\overline{2} \)**: - Let \( x = 0.\overline{2} \). - Then, \( 10x = 2.\overline{2} \). - Subtracting the first equation from the second gives: \[ 10x - x = 2.\overline{2} - 0.\overline{2} \implies 9x = 2 \implies x = \frac{2}{9} \] - Therefore, \( 0.\overline{2} = \frac{2}{9} \). 2. **Convert \( 0.\overline{3} \)**: - Let \( y = 0.\overline{3} \). - Then, \( 10y = 3.\overline{3} \). - Subtracting gives: \[ 10y - y = 3.\overline{3} - 0.\overline{3} \implies 9y = 3 \implies y = \frac{3}{9} = \frac{1}{3} \] - Therefore, \( 0.\overline{3} = \frac{1}{3} \). 3. **Convert \( 0.\overline{32} \)**: - Let \( z = 0.\overline{32} \). - Then, \( 100z = 32.\overline{32} \). - Subtracting gives: \[ 100z - z = 32.\overline{32} - 0.\overline{32} \implies 99z = 32 \implies z = \frac{32}{99} \] - Therefore, \( 0.\overline{32} = \frac{32}{99} \). ### Step 2: Add the fractions Now we need to add \( \frac{2}{9} + \frac{1}{3} + \frac{32}{99} \). 1. **Find a common denominator**: - The least common multiple (LCM) of \( 9, 3, \) and \( 99 \) is \( 99 \). 2. **Convert each fraction to have a denominator of 99**: - Convert \( \frac{2}{9} \): \[ \frac{2}{9} = \frac{2 \times 11}{9 \times 11} = \frac{22}{99} \] - Convert \( \frac{1}{3} \): \[ \frac{1}{3} = \frac{1 \times 33}{3 \times 33} = \frac{33}{99} \] - \( \frac{32}{99} \) remains the same. 3. **Add the fractions**: \[ \frac{22}{99} + \frac{33}{99} + \frac{32}{99} = \frac{22 + 33 + 32}{99} = \frac{87}{99} \] ### Step 3: Simplify the result 1. **Simplify \( \frac{87}{99} \)**: - The greatest common divisor (GCD) of \( 87 \) and \( 99 \) is \( 9 \). - Therefore: \[ \frac{87 \div 9}{99 \div 9} = \frac{9}{11} \] ### Final Result The value of \( 0.\overline{2} + 0.\overline{3} + 0.\overline{32} \) is \( \frac{9}{11} \).
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The value of 0.bar(09)=

The value of 0.bar 57-0.4 bar 32+0.3 bar 5 is: 0.bar 57-0.4 bar 32+0.3 bar 5 का मान क्या होगा:

Knowledge Check

  • The value of 0.1bar23 is:

    A
    a) 61/495
    B
    b) 71/485
    C
    c) 62/719
    D
    d) 123/999
  • 1.bar2xx0.bar3 =

    A
    `0.bar407`
    B
    `0.0bar36`
    C
    `1.bar13`
    D
    `0.bar037`
  • The value of 0.1bar(23) is :

    A
    `(61)/(495)`
    B
    `(71)/(485)`
    C
    `(62)/(719)`
    D
    `(123)/(999)`
  • Similar Questions

    Explore conceptually related problems

    The value of (0.bar63)+0.bar37) is

    The value of 0.bar(3) + 0.bar(6) + 0. bar( 7 ) + 0. bar( 8 ) in fraction will be

    The value of 0.bar(45)+ 0.bar(36) is

    The sum of 0.bar3 and 0.bar4 is

    The value of 0.bar(57)-0.4bar(32)+0.3bar5 is: