Home
Class 14
MATHS
If A:B = 3:4, B: C= 5:7 and C:D = 8: 9, ...

If A:B = 3:4, B: C= 5:7 and C:D = 8: 9, then, the ratio A:D is :

A

`3:7`

B

`7:3`

C

`21:10`

D

`10:21`

Text Solution

AI Generated Solution

The correct Answer is:
To find the ratio A:D given the ratios A:B, B:C, and C:D, we can follow these steps: 1. **Write down the given ratios:** - A:B = 3:4 - B:C = 5:7 - C:D = 8:9 2. **Express each variable in terms of a common variable:** - Let A = 3x, B = 4x (from A:B) - From B:C, we have B = 5y and C = 7y. Since B = 4x, we can equate: \[ 4x = 5y \implies y = \frac{4x}{5} \] - Now substituting y into C: \[ C = 7y = 7 \left(\frac{4x}{5}\right) = \frac{28x}{5} \] 3. **Now express D in terms of x:** - From C:D, we have C = 8z and D = 9z. Since C = \(\frac{28x}{5}\), we can equate: \[ \frac{28x}{5} = 8z \implies z = \frac{28x}{40} = \frac{7x}{10} \] - Now substituting z into D: \[ D = 9z = 9 \left(\frac{7x}{10}\right) = \frac{63x}{10} \] 4. **Now we have A and D in terms of x:** - A = 3x - D = \(\frac{63x}{10}\) 5. **Find the ratio A:D:** \[ A:D = \frac{3x}{\frac{63x}{10}} = \frac{3x \cdot 10}{63x} = \frac{30}{63} \] 6. **Simplify the ratio:** \[ \frac{30}{63} = \frac{10}{21} \] Thus, the ratio A:D is **10:21**.
Promotional Banner

Similar Questions

Explore conceptually related problems

If A : B = 5 : 2, B : C = 2 : 3 and C: D = 5: 3 , then the ratio A: B : C : D is

If A:B=3:4,B:C=5:7 and C:D=8:9 then A:D is equal to

If A : B = 2 : 3, B : C = 4 : 5 and C : D = 6 : 7, then the value of (A+B+C)/D is : यदि A : B = 2 : 3, B : C = 4 : 5 और C : D = 6 : 7 है, तो (A+B+C)/D का मान क्या होगा ?

If A:B= 2:3,B:C = 4:5 and C : D=5 :9, then A: D is equal to- यदि A:B= 2:3,B:C = 4:5 और C : D=5 :9 हो, तो A: D बराबर होगा?

If A, B, C and D are four numbers such that A : B = 2 : 3, B : C = 4 : 5, C : D = 5 : 8, then A : D is equal to

If '1066 is divided among A, B, C and D such that A : B = 3 : 4, B : C = 5 : 6 and C : D = 7 : 5, who will get the maximum?