Home
Class 14
MATHS
Given that sqrt(3) = 1.732, the value of...

Given that `sqrt(3) = 1.732, `the value of ` (3 + sqrt(6 ))/( 5 sqrt(3) - 2 sqrt(12) - sqrt(32) + sqrt(50))`is

A

`4.899`

B

`2.551`

C

`1.414`

D

`1.732`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3 + \sqrt{6})/(5\sqrt{3} - 2\sqrt{12} - \sqrt{32} + \sqrt{50})\), we will follow these steps: ### Step 1: Simplify the Denominator First, we simplify the terms in the denominator: - \(\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}\) - \(\sqrt{32} = \sqrt{16 \cdot 2} = 4\sqrt{2}\) - \(\sqrt{50} = \sqrt{25 \cdot 2} = 5\sqrt{2}\) Now substitute these values back into the denominator: \[ 5\sqrt{3} - 2\sqrt{12} - \sqrt{32} + \sqrt{50} = 5\sqrt{3} - 2(2\sqrt{3}) - 4\sqrt{2} + 5\sqrt{2} \] This simplifies to: \[ 5\sqrt{3} - 4\sqrt{3} + (5\sqrt{2} - 4\sqrt{2}) = (5\sqrt{3} - 4\sqrt{3}) + (5\sqrt{2} - 4\sqrt{2}) = \sqrt{3} + \sqrt{2} \] ### Step 2: Rewrite the Expression Now, we can rewrite the original expression: \[ \frac{3 + \sqrt{6}}{\sqrt{3} + \sqrt{2}} \] ### Step 3: Rationalize the Denominator To simplify further, we will rationalize the denominator by multiplying the numerator and denominator by \((\sqrt{3} - \sqrt{2})\): \[ \frac{(3 + \sqrt{6})(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} \] ### Step 4: Calculate the Denominator The denominator simplifies to: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 \] ### Step 5: Calculate the Numerator Now, we calculate the numerator: \[ (3 + \sqrt{6})(\sqrt{3} - \sqrt{2}) = 3\sqrt{3} - 3\sqrt{2} + \sqrt{6}\sqrt{3} - \sqrt{6}\sqrt{2} \] This simplifies to: \[ 3\sqrt{3} - 3\sqrt{2} + \sqrt{18} - \sqrt{12} \] Where \(\sqrt{18} = 3\sqrt{2}\) and \(\sqrt{12} = 2\sqrt{3}\). Therefore, we have: \[ 3\sqrt{3} - 3\sqrt{2} + 3\sqrt{2} - 2\sqrt{3} = (3\sqrt{3} - 2\sqrt{3}) + (-3\sqrt{2} + 3\sqrt{2}) = \sqrt{3} \] ### Final Result Thus, the entire expression simplifies to: \[ \frac{\sqrt{3}}{1} = \sqrt{3} \] Given that \(\sqrt{3} \approx 1.732\), the final answer is: \[ \sqrt{3} \approx 1.732 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Given that sqrt(3)=1.732, the value of (3+sqrt(6))/(5sqrt(3)-2sqrt(12)-sqrt(32)+sqrt(50)) is (a) 1.414 (b) 1.732( c) 2.551( d )4.899

The value of 5sqrt(3) + 7sqrt(2) - sqrt(6) - 23/(sqrt(2) + sqrt(3) + sqrt(6)) is:

32.Give that sqrt(3)=1.732 find the value of sqrt(75)+(1)/(2)sqrt(48)-sqrt(192)

sqrt(3)=1.732, findthevalueof (2)/(sqrt(3)-1)