Home
Class 14
MATHS
The greatest among sqrt(7) - sqrt(...

The greatest among
`sqrt(7) - sqrt(5) , sqrt(5) - sqrt(3) , sqrt(9) - sqrt(7) , sqrt(11) - sqrt(9)` is

A

`sqrt(7) - sqrt(5)`

B

`sqrt(5) - sqrt(3)`

C

`(sqrt(9)- sqrt(7)`

D

`sqrt(11) - sqrt(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest among the following expressions: 1. \( \sqrt{7} - \sqrt{5} \) 2. \( \sqrt{5} - \sqrt{3} \) 3. \( \sqrt{9} - \sqrt{7} \) 4. \( \sqrt{11} - \sqrt{9} \) we will rationalize each expression and compare their values. ### Step 1: Rationalize \( \sqrt{7} - \sqrt{5} \) To rationalize \( \sqrt{7} - \sqrt{5} \), we multiply and divide by \( \sqrt{7} + \sqrt{5} \): \[ \sqrt{7} - \sqrt{5} = \frac{(\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5})}{\sqrt{7} + \sqrt{5}} = \frac{7 - 5}{\sqrt{7} + \sqrt{5}} = \frac{2}{\sqrt{7} + \sqrt{5}} \] ### Step 2: Rationalize \( \sqrt{5} - \sqrt{3} \) Now, we rationalize \( \sqrt{5} - \sqrt{3} \): \[ \sqrt{5} - \sqrt{3} = \frac{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})}{\sqrt{5} + \sqrt{3}} = \frac{5 - 3}{\sqrt{5} + \sqrt{3}} = \frac{2}{\sqrt{5} + \sqrt{3}} \] ### Step 3: Rationalize \( \sqrt{9} - \sqrt{7} \) Next, we rationalize \( \sqrt{9} - \sqrt{7} \): \[ \sqrt{9} - \sqrt{7} = \frac{(\sqrt{9} - \sqrt{7})(\sqrt{9} + \sqrt{7})}{\sqrt{9} + \sqrt{7}} = \frac{9 - 7}{\sqrt{9} + \sqrt{7}} = \frac{2}{\sqrt{9} + \sqrt{7}} \] ### Step 4: Rationalize \( \sqrt{11} - \sqrt{9} \) Finally, we rationalize \( \sqrt{11} - \sqrt{9} \): \[ \sqrt{11} - \sqrt{9} = \frac{(\sqrt{11} - \sqrt{9})(\sqrt{11} + \sqrt{9})}{\sqrt{11} + \sqrt{9}} = \frac{11 - 9}{\sqrt{11} + \sqrt{9}} = \frac{2}{\sqrt{11} + \sqrt{9}} \] ### Step 5: Compare the values Now we have: 1. \( \sqrt{7} - \sqrt{5} = \frac{2}{\sqrt{7} + \sqrt{5}} \) 2. \( \sqrt{5} - \sqrt{3} = \frac{2}{\sqrt{5} + \sqrt{3}} \) 3. \( \sqrt{9} - \sqrt{7} = \frac{2}{\sqrt{9} + \sqrt{7}} \) 4. \( \sqrt{11} - \sqrt{9} = \frac{2}{\sqrt{11} + \sqrt{9}} \) Since all numerators are equal (2), the greatest value will depend on the smallest denominator. ### Step 6: Evaluate the denominators - \( \sqrt{7} + \sqrt{5} \) - \( \sqrt{5} + \sqrt{3} \) - \( \sqrt{9} + \sqrt{7} \) - \( \sqrt{11} + \sqrt{9} \) Calculating approximate values: 1. \( \sqrt{7} \approx 2.645 \) and \( \sqrt{5} \approx 2.236 \) gives \( \sqrt{7} + \sqrt{5} \approx 4.881 \) 2. \( \sqrt{5} \approx 2.236 \) and \( \sqrt{3} \approx 1.732 \) gives \( \sqrt{5} + \sqrt{3} \approx 3.968 \) 3. \( \sqrt{9} = 3 \) and \( \sqrt{7} \approx 2.645 \) gives \( \sqrt{9} + \sqrt{7} \approx 5.645 \) 4. \( \sqrt{11} \approx 3.317 \) and \( \sqrt{9} = 3 \) gives \( \sqrt{11} + \sqrt{9} \approx 6.317 \) ### Conclusion The smallest denominator is \( \sqrt{5} + \sqrt{3} \), which corresponds to \( \sqrt{5} - \sqrt{3} \). Thus, the greatest among the given expressions is: \[ \boxed{\sqrt{5} - \sqrt{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(2sqrt(7))/(sqrt(5)-sqrt(3))

Evaluate : ( sqrt(7) + sqrt(5) ) ( sqrt(5) - sqrt(7) )

(sqrt(5)+sqrt(3))(sqrt(7)-sqrt(3))

sqrt(9)/(sqrt(7)+sqrt(2))

(sqrt(7)-sqrt(5))^3 - (sqrt(7)+sqrt(5))^3

Which is the greatest among (sqrt(19)-sqrt(17)),(sqrt(13)-sqrt(11)),(sqrt(7)-sqrt(5)) and (sqrt(5)-sqrt(3))?

Which is the greatest among (sqrt(19)-sqrt(17)),(sqrt(13)-sqrt(11)),(sqrt(7)-sqrt(5)) and (sqrt(5)-sqrt(3))?