Home
Class 14
MATHS
0.overline(142857 ) + 0.overline(285714 ...

`0.overline(142857 ) + 0.overline(285714 )` is equal to

A

`10`

B

`2`

C

`3/7`

D

`1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(0.\overline{142857} + 0.\overline{285714}\), we will first convert each repeating decimal into a fraction. ### Step 1: Convert \(0.\overline{142857}\) to a fraction Let \(x = 0.\overline{142857}\). To eliminate the repeating part, multiply both sides by \(10^6\) (since the repeating part has 6 digits): \[ 10^6 x = 142857.\overline{142857} \] Now, subtract the original \(x\) from this equation: \[ 10^6 x - x = 142857.\overline{142857} - 0.\overline{142857} \] This simplifies to: \[ 999999x = 142857 \] Now, solve for \(x\): \[ x = \frac{142857}{999999} \] ### Step 2: Simplify the fraction Notice that \(999999 = 7 \times 142857\). Therefore: \[ x = \frac{142857}{7 \times 142857} = \frac{1}{7} \] So, \(0.\overline{142857} = \frac{1}{7}\). ### Step 3: Convert \(0.\overline{285714}\) to a fraction Let \(y = 0.\overline{285714}\). Similarly, multiply both sides by \(10^6\): \[ 10^6 y = 285714.\overline{285714} \] Subtract the original \(y\): \[ 10^6 y - y = 285714.\overline{285714} - 0.\overline{285714} \] This simplifies to: \[ 999999y = 285714 \] Now, solve for \(y\): \[ y = \frac{285714}{999999} \] ### Step 4: Simplify the fraction Again, notice that \(999999 = 7 \times 142857\) and \(285714 = 2 \times 142857\). Therefore: \[ y = \frac{285714}{7 \times 142857} = \frac{2}{7} \] So, \(0.\overline{285714} = \frac{2}{7}\). ### Step 5: Add the two fractions Now we can add the two fractions: \[ 0.\overline{142857} + 0.\overline{285714} = \frac{1}{7} + \frac{2}{7} \] Combine the fractions: \[ \frac{1 + 2}{7} = \frac{3}{7} \] ### Final Answer Thus, \(0.\overline{142857} + 0.\overline{285714} = \frac{3}{7}\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

0.overline(68) + 0. overline(73) = ?

The value of overline(23) + 0. overline(22) is

What is 3.overline(76)-1.overline(4576) equal to

The volume of paralleloP1ped with vector overline(a)+2overline(b)+overline(c), overline(a)-overline(b) and overline(a)-overline(b)-overline(c) is equal to k[[overline(a), overline(b), overline(c)]] . Then k=

If |overline(a)|=5, |overline(b)|=3, |overline(c)|=4 and |overline(a)| is perpendicular to |overline(b)| and |overline(c)| such that the angle between |overline(b)| and |overline(c)| is (5pi)/(6) , then [[overline(a),overline(b), overline(c)]]=

If |overline(c)|=1 and overline(c) is perpedicular to overline(a) and overline(b) such that the angle between overline(a) and overline(b) is (pi)/(4) , then [[overline(a), overline(b), overline(c)]]=

If overline(c)=5overline(a)-4overline(b) and overline(a) is perpendicular to overline(b) , then c^(2)=