Home
Class 14
MATHS
If x^2 - 3x +1=0, then the value ...

If ` x^2 - 3x +1=0,` then the value of ` x +1/x ` is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - 3x + 1 = 0 \) and find the value of \( x + \frac{1}{x} \), we can follow these steps: ### Step 1: Solve the quadratic equation We start with the quadratic equation: \[ x^2 - 3x + 1 = 0 \] We can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -3, c = 1 \). ### Step 2: Calculate the discriminant First, we calculate the discriminant \( D \): \[ D = b^2 - 4ac = (-3)^2 - 4 \cdot 1 \cdot 1 = 9 - 4 = 5 \] ### Step 3: Find the roots Now we can find the roots using the quadratic formula: \[ x = \frac{3 \pm \sqrt{5}}{2} \] ### Step 4: Find \( x + \frac{1}{x} \) Next, we need to find \( x + \frac{1}{x} \). We can express \( \frac{1}{x} \) in terms of \( x \): \[ \frac{1}{x} = \frac{2}{3 \pm \sqrt{5}} \] To simplify \( x + \frac{1}{x} \), we can multiply \( x \) by \( \frac{1}{x} \): \[ x + \frac{1}{x} = x + \frac{1}{x} = \frac{x^2 + 1}{x} \] Using the original equation \( x^2 - 3x + 1 = 0 \), we can rearrange it to find \( x^2 \): \[ x^2 = 3x - 1 \] Now substituting this into our expression: \[ x + \frac{1}{x} = \frac{(3x - 1) + 1}{x} = \frac{3x}{x} = 3 \] ### Final Answer Thus, the value of \( x + \frac{1}{x} \) is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2 - 3x + 1 = 0 , then the value of (x^6 + x^4 + x^2 + 1)/(x^3) will be

If x^(2) - 3x + 1 = 0 , then the value of x^(3) + (1)/(x^(3)) is equal to