Home
Class 14
MATHS
(137 xx 137 + 137 xx 133 + 133 xx 133)/(...

`(137 xx 137 + 137 xx 133 + 133 xx 133)/(137 xx 137 xx 137 - 133 xx 133 xx 133)` is equal to

A

4

B

270

C

`(1)/(4)`

D

`(1)/(270)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((137 \times 137 + 137 \times 133 + 133 \times 133)/(137 \times 137 \times 137 - 133 \times 133 \times 133)\), we can simplify it step by step. ### Step 1: Identify Variables Let \( A = 137 \) and \( B = 133 \). ### Step 2: Rewrite the Expression Now, we can rewrite the expression using \( A \) and \( B \): \[ \frac{A^2 + A \cdot B + B^2}{A^3 - B^3} \] ### Step 3: Simplify the Numerator The numerator \( A^2 + A \cdot B + B^2 \) can be factored using the identity: \[ A^2 + A \cdot B + B^2 = (A + B)^2 - AB \] Calculating \( A + B \) and \( AB \): \[ A + B = 137 + 133 = 270 \] \[ AB = 137 \times 133 \] Now we can compute \( A^2 + A \cdot B + B^2 \): \[ A^2 + A \cdot B + B^2 = 270^2 - (137 \times 133) \] ### Step 4: Simplify the Denominator The denominator \( A^3 - B^3 \) can be factored using the difference of cubes: \[ A^3 - B^3 = (A - B)(A^2 + AB + B^2) \] Calculating \( A - B \): \[ A - B = 137 - 133 = 4 \] ### Step 5: Substitute Back Now we can substitute back into the expression: \[ \frac{(A^2 + A \cdot B + B^2)}{(A - B)(A^2 + AB + B^2)} = \frac{(A^2 + A \cdot B + B^2)}{4(A^2 + AB + B^2)} \] ### Step 6: Cancel Common Terms Since \( A^2 + A \cdot B + B^2 \) appears in both the numerator and denominator, we can cancel it out: \[ \frac{1}{4} \] ### Final Answer Thus, the expression simplifies to: \[ \frac{1}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify:- '(137*137 + 137*133 + 133*133) / (137*137*137 - 133*133*133)'

7 : 133 :: 9 : ?

9, 13, 21, 37, 61, 133

(963xx963xx963+137xx137xx137)/(963xx963-963xx137+137xx137)=?

17, 21, 37, 73, 137, 237, ….

1, 14, 31, 64, 133, 264

What is the sum of 13.3 , 1.33 and 1.0333 ?

Find the value of: (i) (82)^(2) - (18)^(2) (ii) (128)^(2) - (72)^(2) (iii) 197 xx 203 (iv) (198 xx 198 - 102 xx 102)/(96) (v) (14.7 xx 15.3) (vi) (8.63)^(2) - (1.37)^(2)