Home
Class 14
MATHS
[(sqrt3 + sqrt2 )/(sqrt3 - sqrt2) - (sqr...

`[(sqrt3 + sqrt2 )/(sqrt3 - sqrt2) - (sqrt3 - sqrt2)/(sqrt3 + sqrt2)]` simplifies to

A

`2 sqrt6`

B

`4 sqrt6`

C

` 2 sqrt3`

D

`3 sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} - \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\), we can follow these steps: ### Step 1: Find a common denominator The common denominator for the two fractions is \((\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})\). ### Step 2: Rewrite the expression with the common denominator The expression can be rewritten as: \[ \frac{(\sqrt{3} + \sqrt{2})^2 - (\sqrt{3} - \sqrt{2})^2}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} \] ### Step 3: Expand the numerators Using the formula \((a + b)^2 = a^2 + 2ab + b^2\) and \((a - b)^2 = a^2 - 2ab + b^2\): - For \((\sqrt{3} + \sqrt{2})^2\): \[ (\sqrt{3})^2 + 2(\sqrt{3})(\sqrt{2}) + (\sqrt{2})^2 = 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6} \] - For \((\sqrt{3} - \sqrt{2})^2\): \[ (\sqrt{3})^2 - 2(\sqrt{3})(\sqrt{2}) + (\sqrt{2})^2 = 3 - 2\sqrt{6} + 2 = 5 - 2\sqrt{6} \] ### Step 4: Subtract the expanded numerators Now we subtract the two results: \[ (5 + 2\sqrt{6}) - (5 - 2\sqrt{6}) = 5 + 2\sqrt{6} - 5 + 2\sqrt{6} = 4\sqrt{6} \] ### Step 5: Simplify the denominator The denominator simplifies as follows: \[ (\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2}) = (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 \] ### Step 6: Combine the results Thus, the entire expression simplifies to: \[ \frac{4\sqrt{6}}{1} = 4\sqrt{6} \] ### Final Answer The simplified form of the expression is: \[ \boxed{4\sqrt{6}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(2sqrt3 + sqrt2)(2sqrt3-sqrt2)

If a= (sqrt3 - sqrt2)/(sqrt3 + sqrt2), b = (sqrt3 + sqrt2)/(sqrt3 - sqrt2) then what is the value of a^2/b+b^2/a ?

(3 + sqrt2)(2-sqrt3)(3-sqrt2)(2+sqrt3)

If a=(sqrt3+ sqrt2)/(sqrt3- sqrt2) and b=(sqrt3- sqrt2)/(sqrt3+sqrt2) , then what is the value of a^2+b^2-ab ?

[(3sqrt2)/(sqrt3 + sqrt6) - (4sqrt3)/(sqrt6 + sqrt2) + (sqrt6)/(sqrt2 + sqrt3)] is simplified to

((1+sqrt2)/(sqrt5+sqrt3) + (1-sqrt2)/(sqrt5-sqrt3)) simplifies to :

3/(sqrt3-sqrt2)=asqrt3-bsqrt2