Home
Class 14
MATHS
Given that 1^(2) + 2^(2) + 3^(2) + …. + ...

Given that `1^(2) + 2^(2) + 3^(2) + …. + n^(2) = (n)/(6) (n + 1) (2n + 1)` , then `10^(2) + 11^(2) + 12^(2) + … + 20^(2)` is equal to

A

2616

B

2585

C

3747

D

2555

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum \(10^2 + 11^2 + 12^2 + \ldots + 20^2\) using the formula for the sum of squares, we can follow these steps: ### Step-by-Step Solution: 1. **Understand the Formula**: We are given the formula for the sum of squares: \[ 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n}{6} (n + 1)(2n + 1) \] 2. **Calculate the Sum from 1 to 20**: First, we will calculate \(1^2 + 2^2 + \ldots + 20^2\) by substituting \(n = 20\) into the formula: \[ S_{20} = \frac{20}{6} (20 + 1)(2 \times 20 + 1) \] Simplifying this: \[ S_{20} = \frac{20}{6} \times 21 \times 41 \] 3. **Calculate \(S_{20}\)**: - First, simplify \(\frac{20}{6} = \frac{10}{3}\). - Now calculate \(21 \times 41\): \[ 21 \times 41 = 861 \] - Now substitute back: \[ S_{20} = \frac{10}{3} \times 861 \] - Calculate: \[ S_{20} = 2870 \] 4. **Calculate the Sum from 1 to 9**: Next, we will calculate \(1^2 + 2^2 + \ldots + 9^2\) by substituting \(n = 9\) into the formula: \[ S_{9} = \frac{9}{6} (9 + 1)(2 \times 9 + 1) \] Simplifying this: \[ S_{9} = \frac{9}{6} \times 10 \times 19 \] - First, simplify \(\frac{9}{6} = \frac{3}{2}\). - Now calculate \(10 \times 19 = 190\): \[ S_{9} = \frac{3}{2} \times 190 = 285 \] 5. **Calculate the Required Sum**: Now we can find \(10^2 + 11^2 + \ldots + 20^2\) by subtracting \(S_{9}\) from \(S_{20}\): \[ 10^2 + 11^2 + \ldots + 20^2 = S_{20} - S_{9} = 2870 - 285 \] - Calculate: \[ 2870 - 285 = 2585 \] ### Final Answer: Thus, the value of \(10^2 + 11^2 + 12^2 + \ldots + 20^2\) is \(2585\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : 1^(2)+2^(2)+3^(2)+...+n^(2)=(n(n+1)(2n+1))/(6)

If n in Z , then (2^(n))/(1+i)^(2n)+(1+i)^(2n)/(2^(n)) is equal to

a_ (n) = (1+ (1) / (n ^ (2))) (1+ (2 ^ (2)) / (n ^ (2))) ^ (2) (1+ (3 ^ ( 2)) / (n ^ (2))) ^ (3) ......... (1+ (n ^ (2)) / (n ^ (2))) ^ (n) then lim_ (n rarr oo) a_ (n) ^ (- (1) / (n ^ (2))) is equal to

Prove the equality 1^(2)+2^(2)+3^(2) . . .+n^(2)=.^(n+1)C_(2)+2(.^(n)C_(2)+.^(n-1)C_(2) . . .+.^(2)C_(2)) .

lim _(n to oo) ( 1/(n^(2)+1^(2)) + 1/(n^(2)+2^(2)) +...1/(2n^(2))) equals

If A_(n)=(n, n+1) , then 10(A_(10)A_(11))^(2)+11(A_(11)A_(12))^(2)+….+20(A_(20)A_(21))^(2) is equal to