Home
Class 14
MATHS
[(3sqrt2)/(sqrt3 + sqrt6) - (4sqrt3)/(sq...

`[(3sqrt2)/(sqrt3 + sqrt6) - (4sqrt3)/(sqrt6 + sqrt2) + (sqrt6)/(sqrt2 + sqrt3)]` is simplified to

A

`sqrt6`

B

`sqrt3`

C

`sqrt2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\frac{3\sqrt{2}}{\sqrt{3} + \sqrt{6}} - \frac{4\sqrt{3}}{\sqrt{6} + \sqrt{2}} + \frac{\sqrt{6}}{\sqrt{2} + \sqrt{3}}\), we will follow these steps: ### Step 1: Rationalize the denominators We will rationalize each term in the expression. 1. For the first term \(\frac{3\sqrt{2}}{\sqrt{3} + \sqrt{6}}\), multiply the numerator and denominator by \(\sqrt{3} - \sqrt{6}\): \[ \frac{3\sqrt{2}(\sqrt{3} - \sqrt{6})}{(\sqrt{3} + \sqrt{6})(\sqrt{3} - \sqrt{6})} = \frac{3\sqrt{2}(\sqrt{3} - \sqrt{6})}{3 - 6} = \frac{3\sqrt{2}(\sqrt{3} - \sqrt{6})}{-3} = -\sqrt{2}(\sqrt{3} - \sqrt{6}) \] 2. For the second term \(\frac{4\sqrt{3}}{\sqrt{6} + \sqrt{2}}\), multiply the numerator and denominator by \(\sqrt{6} - \sqrt{2}\): \[ \frac{4\sqrt{3}(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})} = \frac{4\sqrt{3}(\sqrt{6} - \sqrt{2})}{6 - 2} = \frac{4\sqrt{3}(\sqrt{6} - \sqrt{2})}{4} = \sqrt{3}(\sqrt{6} - \sqrt{2}) \] 3. For the third term \(\frac{\sqrt{6}}{\sqrt{2} + \sqrt{3}}\), multiply the numerator and denominator by \(\sqrt{2} - \sqrt{3}\): \[ \frac{\sqrt{6}(\sqrt{2} - \sqrt{3})}{(\sqrt{2} + \sqrt{3})(\sqrt{2} - \sqrt{3})} = \frac{\sqrt{6}(\sqrt{2} - \sqrt{3})}{2 - 3} = -\sqrt{6}(\sqrt{2} - \sqrt{3}) \] ### Step 2: Combine the terms Now we can rewrite the expression with the simplified terms: \[ -\sqrt{2}(\sqrt{3} - \sqrt{6}) - \sqrt{3}(\sqrt{6} - \sqrt{2}) - \sqrt{6}(\sqrt{2} - \sqrt{3}) \] ### Step 3: Distribute and combine like terms Distributing each term: 1. \(-\sqrt{2}\sqrt{3} + \sqrt{2}\sqrt{6}\) 2. \(-\sqrt{3}\sqrt{6} + \sqrt{3}\sqrt{2}\) 3. \(-\sqrt{6}\sqrt{2} + \sqrt{6}\sqrt{3}\) Combining these gives: \[ (-\sqrt{2}\sqrt{3} + \sqrt{3}\sqrt{2}) + (\sqrt{2}\sqrt{6} - \sqrt{6}\sqrt{2}) + (-\sqrt{3}\sqrt{6} + \sqrt{6}\sqrt{3}) = 0 \] ### Final Result Thus, the expression simplifies to: \[ 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

[(sqrt3 + sqrt2 )/(sqrt3 - sqrt2) - (sqrt3 - sqrt2)/(sqrt3 + sqrt2)] simplifies to

((1+sqrt2)/(sqrt5+sqrt3) + (1-sqrt2)/(sqrt5-sqrt3)) simplifies to :

(3sqrt(2))/(sqrt(3)+sqrt(6))-(4sqrt(3))/(sqrt(6)+sqrt(2))+(sqrt(6))/(sqrt(3)+sqrt(2))

(sqrt(2))/(sqrt(6)-sqrt(2))-(sqrt(3))/(sqrt(6)+sqrt(2))

(3sqrt2+sqrt3-sqrt6)/(2sqrt3-3sqrt2+sqrt6)=