Home
Class 14
MATHS
((998)^(2) - (997)^(2) - 45)/((98)^(2) -...

`((998)^(2) - (997)^(2) - 45)/((98)^(2) - (97)^(2))` equals

A

1995

B

195

C

95

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(998)^2 - (997)^2 - 45}{(98)^2 - (97)^2}\), we can use the difference of squares formula, which states that \(a^2 - b^2 = (a + b)(a - b)\). ### Step-by-Step Solution: 1. **Identify the Numerator:** The numerator is \((998)^2 - (997)^2 - 45\). We can apply the difference of squares formula: \[ (998)^2 - (997)^2 = (998 + 997)(998 - 997) \] This simplifies to: \[ (1995)(1) = 1995 \] Therefore, the numerator becomes: \[ 1995 - 45 = 1950 \] 2. **Identify the Denominator:** The denominator is \((98)^2 - (97)^2\). Again, using the difference of squares formula: \[ (98)^2 - (97)^2 = (98 + 97)(98 - 97) \] This simplifies to: \[ (195)(1) = 195 \] 3. **Combine the Results:** Now we can substitute back into the original expression: \[ \frac{1950}{195} \] 4. **Simplify the Fraction:** We can simplify the fraction: \[ \frac{1950 \div 195}{195 \div 195} = \frac{10}{1} = 10 \] Thus, the final answer is: \[ \boxed{10} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is 26^(2)+97^(2) equal to ?

(2-(1)/(3))(2-(3)/(5))(2-(5)/(7))....(2-(997)/(999)) is equal to

When simplified,the product (2-(1)/(3))(2-(3)/(5))(2-(5)/(7))(2-(997)/(999)) is equal to (5)/(999) (b) (1001)/(999) (c) (1)/(1001) (d) (1001)/(3)

The value of 99^(50) - 99.98^(50) + (99*98)/(1*2) (97)^(50) -…+ 99 is

(21.98)^(2)-(25.02)^(2)+(13.03)^(2)=?

cos^(2)(97.5^(@))-sin^(2)(37.5^(@)) is equal to-

(1-tan^(2)(45^(@)-A))/(1+tan^(2)(45^(@)-A)) is equal to