Home
Class 14
MATHS
(256 xx 256 - 144 xx 144)/(112) is equal...

`(256 xx 256 - 144 xx 144)/(112)` is equal to

A

420

B

400

C

360

D

320

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((256 \times 256 - 144 \times 144) / 112\), we can follow these steps: ### Step 1: Recognize the Difference of Squares The expression \(256 \times 256 - 144 \times 144\) can be rewritten using the difference of squares formula: \[ A^2 - B^2 = (A + B)(A - B) \] Here, let \(A = 256\) and \(B = 144\). ### Step 2: Apply the Difference of Squares Formula Using the formula, we can rewrite the expression: \[ 256^2 - 144^2 = (256 + 144)(256 - 144) \] ### Step 3: Calculate \(256 + 144\) and \(256 - 144\) Now, we calculate the two sums: \[ 256 + 144 = 400 \] \[ 256 - 144 = 112 \] ### Step 4: Substitute Back into the Expression Now we substitute back into the expression: \[ (256^2 - 144^2) = (400)(112) \] ### Step 5: Divide by 112 Now, we can substitute this back into our original expression: \[ \frac{(400)(112)}{112} \] ### Step 6: Simplify the Expression The \(112\) in the numerator and denominator cancels out: \[ 400 \] ### Final Answer Thus, the value of the expression \((256 \times 256 - 144 \times 144) / 112\) is: \[ \boxed{400} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

(256×256−144×144)/112 is equal to (a) 420 (b) 400 (c) 360 (d) 320

8 : 256 :: ?

Knowledge Check

  • (256xx256-144xx144)/(112) is equal to

    A
    a) `420`
    B
    b) `400`
    C
    c) `360`
    D
    d) `320`
  • (256)^(0.16) xx (16)^(0.18) is equal to

    A
    4
    B
    16
    C
    64
    D
    `256.25`
  • (256)^(0.16) xx (16)^(0.18) is equal to

    A
    4
    B
    16
    C
    64
    D
    256.25
  • Similar Questions

    Explore conceptually related problems

    sqrt(4+ sqrt(144)) is equal to :

    (256)^(0.16)xx(4)^(0.36) is equal to

    sqrt(1 (1)/(4) xx (64)/(125) xx 1.44) is equal to

    root3(144) xx root3(12) equals

    The expression, for p != 1, (1 + p^(256)) xx (1 xx p^(128)) xx (1 _ p^(64)) xx (1 + p^(32)) xx (1 + p^(16)) xx (1 + p^8) xx (1 +p^4) xx (1 + p^2) xx (1 + p) is equivalent to :