Home
Class 14
MATHS
sqrt(8 + sqrt(57 + sqrt(38 + sqrt(108 + ...

`sqrt(8 + sqrt(57 + sqrt(38 + sqrt(108 + sqrt(169)))))=? `

A

4

B

6

C

8

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{8 + \sqrt{57 + \sqrt{38 + \sqrt{108 + \sqrt{169}}}}} \), we will simplify it step by step. ### Step 1: Simplify the innermost square root First, we start with the innermost expression \( \sqrt{169} \): \[ \sqrt{169} = 13 \] ### Step 2: Substitute back into the expression Now substitute \( 13 \) back into the expression: \[ \sqrt{108 + \sqrt{169}} = \sqrt{108 + 13} = \sqrt{121} \] ### Step 3: Simplify the next square root Now simplify \( \sqrt{121} \): \[ \sqrt{121} = 11 \] ### Step 4: Substitute back again Now substitute \( 11 \) back into the expression: \[ \sqrt{38 + \sqrt{108 + \sqrt{169}}} = \sqrt{38 + 11} = \sqrt{49} \] ### Step 5: Simplify \( \sqrt{49} \) Now simplify \( \sqrt{49} \): \[ \sqrt{49} = 7 \] ### Step 6: Substitute back into the expression Now substitute \( 7 \) back into the expression: \[ \sqrt{57 + \sqrt{38 + \sqrt{108 + \sqrt{169}}}} = \sqrt{57 + 7} = \sqrt{64} \] ### Step 7: Simplify \( \sqrt{64} \) Now simplify \( \sqrt{64} \): \[ \sqrt{64} = 8 \] ### Step 8: Substitute back into the outermost expression Now substitute \( 8 \) back into the expression: \[ \sqrt{8 + \sqrt{57 + \sqrt{38 + \sqrt{108 + \sqrt{169}}}}} = \sqrt{8 + 8} = \sqrt{16} \] ### Step 9: Final simplification Finally, simplify \( \sqrt{16} \): \[ \sqrt{16} = 4 \] Thus, the final answer is: \[ \sqrt{8 + \sqrt{57 + \sqrt{38 + \sqrt{108 + \sqrt{169}}}}} = 4 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?

sqrt(144)+sqrt(169)=?^(2)

Which value among sqrt(11) + sqrt(5), sqrt(14) + sqrt(2), sqrt(8) + sqrt(8) is the largest?

sqrt(8+sqrt(8+sqrt(8+...)))

8sqrt(5)+sqrt(20)-sqrt(125)