Home
Class 14
MATHS
The value of 1 + (1)/( 1 + (1)/(1+(1)/(1...

The value of `1 + (1)/( 1 + (1)/(1+(1)/(1+(2)/(3))))` is

A

`(21)/(13)`

B

`(17)/(3)`

C

`(34)/(21)`

D

`(8)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{2}{3}}}}\), we will work from the innermost part of the expression outward. ### Step-by-Step Solution: 1. **Start with the innermost fraction:** \[ \frac{2}{3} \] This is already simplified. 2. **Next, evaluate the expression:** \[ 1 + \frac{2}{3} \] To add these, convert 1 to a fraction: \[ 1 = \frac{3}{3} \] Now, add: \[ \frac{3}{3} + \frac{2}{3} = \frac{5}{3} \] 3. **Now substitute this back into the next layer:** \[ 1 + \frac{5}{3} \] Again, convert 1 to a fraction: \[ 1 = \frac{3}{3} \] Now, add: \[ \frac{3}{3} + \frac{5}{3} = \frac{8}{3} \] 4. **Substitute this result into the next layer:** \[ 1 + \frac{8}{3} \] Convert 1 to a fraction: \[ 1 = \frac{3}{3} \] Now, add: \[ \frac{3}{3} + \frac{8}{3} = \frac{11}{3} \] 5. **Finally, substitute this into the outermost layer:** \[ 1 + \frac{11}{3} \] Convert 1 to a fraction: \[ 1 = \frac{3}{3} \] Now, add: \[ \frac{3}{3} + \frac{11}{3} = \frac{14}{3} \] ### Final Answer: The value of the expression \(1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{2}{3}}}}\) is \(\frac{14}{3}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

1.The value of 1+(1)/(1+(1)/(2+(1)/(3))) is

The value of (1)/(1+(1)/(1+(1)/(1+(1)/(2)))) on simplification is:

The value of (2 (1)/(3) - 1(2)/(11) )/(3 + (1)/(3 + (1)/(3 + 1/3) ))

The value of (1-(1)/(2))(1-(1)/(3))(1-(1)/(4))(1-(1)/(m)) is (1-(1)/(2))(1-(1)/(2m) (d) (1)/(123(m-1)m)

The value of ((1)/(2)" of "1(1)/(2))-:(3(1)/(2)-1(1)/(4))" of "1(1)/(2)-1(1)/(2)-:2(1)/(4)+1(1)/(3) is: