Home
Class 14
MATHS
If (a)/(b)=(c)/(d)=(e)/(f)=3 , then (2a^...

If `(a)/(b)=(c)/(d)=(e)/(f)=3` , then `(2a^2 + 3c^(2) + 4e^(2))/(2b^(2) + 3d^(2) + 4f^(2))=?`

A

2

B

3

C

4

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given ratios: 1. **Given Ratios**: \[ \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = 3 \] This implies: \[ a = 3b, \quad c = 3d, \quad e = 3f \] 2. **Substituting Values**: We need to substitute these values into the expression: \[ \frac{2a^2 + 3c^2 + 4e^2}{2b^2 + 3d^2 + 4f^2} \] Substituting \(a\), \(c\), and \(e\): \[ = \frac{2(3b)^2 + 3(3d)^2 + 4(3f)^2}{2b^2 + 3d^2 + 4f^2} \] 3. **Calculating the Numerator**: Now, let's calculate the numerator: \[ = \frac{2(9b^2) + 3(9d^2) + 4(9f^2)}{2b^2 + 3d^2 + 4f^2} \] \[ = \frac{18b^2 + 27d^2 + 36f^2}{2b^2 + 3d^2 + 4f^2} \] 4. **Factoring Out the Common Term**: Notice that we can factor out a 9 from the numerator: \[ = \frac{9(2b^2 + 3d^2 + 4f^2)}{2b^2 + 3d^2 + 4f^2} \] 5. **Simplifying the Expression**: Now, we can simplify the expression: \[ = 9 \] Thus, the final answer is: \[ \boxed{9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (a)/(b)=(c)/(d)=(e)/(f) , then (a^(3)+c^(3)+e^(3))/(b^(3)+d^(3)+f^(3))=_____

If (a)/(b)=(c)/(d)=(e)/(f) and (2a^(4)b^(2)+3a^(2)c^(2)-5e^(4)f)/(2b^(6)+3b^(2)d^(2)-5f^(5))=((a)/(b))^(n) then find the value of n.

If a/b = c/d =e/f = 4, then (m ^(2) a + n^(2) c + p ^(2) e )/( m ^(2) b + n ^(2) d + p ^(2) f )=?

If (a)/(b)=(c)/(d)=(e)/(f), prove that (b^(2)+d^(2)+f^(2))(a^(2)+c^(2)+e^(2))=(ab+cd+ef)^(2)

If (a)/(2b) = (c )/(d) = (e )/(3f) , then the value of (2a^(4)b^(2)+3a^(2)c^(2)-5e^(4)f)/(32b^(6)+12b^(2)d^(2)-405f^(5)) is

If (a)/(b)=(c)/(d)=(e)/(f)=(3)/(4) , then what is the value of (3a-4c-e)/(3b-4d-f) ?