Home
Class 14
MATHS
If x : y = 4 :5 , then (3x + y) : (5x + ...

If x : y = 4 :5 , then `(3x + y) : (5x + 3y)`=

A

`3:5`

B

`5:3`

C

`17:35`

D

`35:17`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x : y = 4 : 5 \) and we need to find \( (3x + y) : (5x + 3y) \), we can follow these steps: ### Step 1: Express the ratio in fraction form Given \( x : y = 4 : 5 \), we can express this as: \[ \frac{x}{y} = \frac{4}{5} \] ### Step 2: Substitute \( x \) in terms of \( y \) From the ratio \( \frac{x}{y} = \frac{4}{5} \), we can express \( x \) in terms of \( y \): \[ x = \frac{4}{5}y \] ### Step 3: Substitute \( x \) in the expressions \( 3x + y \) and \( 5x + 3y \) Now we substitute \( x \) into the expressions \( 3x + y \) and \( 5x + 3y \). **Numerator:** \[ 3x + y = 3\left(\frac{4}{5}y\right) + y = \frac{12}{5}y + y = \frac{12}{5}y + \frac{5}{5}y = \frac{17}{5}y \] **Denominator:** \[ 5x + 3y = 5\left(\frac{4}{5}y\right) + 3y = 4y + 3y = 7y \] ### Step 4: Form the ratio Now we can form the ratio: \[ (3x + y) : (5x + 3y) = \frac{\frac{17}{5}y}{7y} \] ### Step 5: Simplify the ratio The \( y \) in the numerator and denominator cancels out: \[ = \frac{17/5}{7} = \frac{17}{5 \times 7} = \frac{17}{35} \] ### Step 6: Write the final ratio Thus, we can express the final ratio as: \[ (3x + y) : (5x + 3y) = 17 : 35 \] ### Final Answer The final answer is: \[ \boxed{17 : 35} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x : y = 3 : 4 find (3x + 4y) : (5x + 6y) .

If x:y = 1:1, then (3x+4y)/(5x+6y) = ____.

If x:y=4:5 , then (2x+3y): (8x-5y) is equal to :

3x + 5y = 34.5x + 3y = 30

3 x + 5y = 12, 5x + 3y = 4 .

Multiply (3x+2y) and (5x+3y)

If x:y=3:5, find the ratio 3x+4y:8x+5y

Find the values of (x+y ) , if (i) 3x + 4y = 11 , 4x + 3y = 10 (ii) 5x - 2y = 4 , x + 8y = 26

Minimize z = x + 3y Subject to x + y le 5 2x + y ge 4 x + 5y ge 5 x ge 3 y le 3