Home
Class 14
MATHS
If (4 sqrt(3) + 5 sqrt(2))/(sqrt(48 ) + ...

If `(4 sqrt(3) + 5 sqrt(2))/(sqrt(48 ) + sqrt(18))= a + bsqrt(6)` , then the value of a and b are respectively

A

`(9)/(15),-(4)/(15)`

B

`(3)/(11),(4)/(33)`

C

`(9)/(10),(2)/(5)`

D

`(3)/(5),(4)/(15)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{4 \sqrt{3} + 5 \sqrt{2}}{\sqrt{48} + \sqrt{18}} = a + b \sqrt{6} \] we will follow these steps: ### Step 1: Simplify the Denominator First, we simplify the denominator \(\sqrt{48} + \sqrt{18}\). \[ \sqrt{48} = \sqrt{16 \cdot 3} = 4\sqrt{3} \] \[ \sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2} \] Thus, the denominator becomes: \[ \sqrt{48} + \sqrt{18} = 4\sqrt{3} + 3\sqrt{2} \] ### Step 2: Rationalize the Denominator To rationalize the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator, which is \(4\sqrt{3} - 3\sqrt{2}\): \[ \frac{(4\sqrt{3} + 5\sqrt{2})(4\sqrt{3} - 3\sqrt{2})}{(4\sqrt{3} + 3\sqrt{2})(4\sqrt{3} - 3\sqrt{2})} \] ### Step 3: Calculate the Denominator Using the difference of squares: \[ (4\sqrt{3})^2 - (3\sqrt{2})^2 = 48 - 18 = 30 \] ### Step 4: Calculate the Numerator Now we calculate the numerator: \[ (4\sqrt{3})(4\sqrt{3}) - (4\sqrt{3})(3\sqrt{2}) + (5\sqrt{2})(4\sqrt{3}) - (5\sqrt{2})(3\sqrt{2}) \] \[ = 16 \cdot 3 - 12\sqrt{6} + 20\sqrt{6} - 15 \cdot 2 \] \[ = 48 - 30 + 8\sqrt{6} \] \[ = 18 + 8\sqrt{6} \] ### Step 5: Combine the Results Now we have: \[ \frac{18 + 8\sqrt{6}}{30} \] We can separate this into two fractions: \[ = \frac{18}{30} + \frac{8\sqrt{6}}{30} \] \[ = \frac{3}{5} + \frac{4\sqrt{6}}{15} \] ### Step 6: Identify \(a\) and \(b\) From the expression \(\frac{3}{5} + \frac{4\sqrt{6}}{15}\), we can identify: \[ a = \frac{3}{5}, \quad b = \frac{4}{15} \] ### Final Answer Thus, the values of \(a\) and \(b\) are: \[ \boxed{\left(\frac{3}{5}, \frac{4}{15}\right)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))

( sqrt(2) + sqrt(3)) /( sqrt(2 - sqrt(3)) = a + bsqrt(3) , find the a and b

If (5+2sqrt3)/(7+4sqrt3)=a+bsqrt3 , then the value of a and b is

If (3sqrt(5)-6sqrt(7))-(2sqrt(5)-11sqrt(7))=asqrt(5)+bsqrt(7), then find the values of a and b.

If (sqrt7-sqrt5)/(sqrt7+sqrt5)=a+bsqrt(35) , then the value of (a - b) is

If a+bsqrt(5)=(4-3sqrt(5))/(4+3sqrt(5)) , then find the values of a and b.

(2+sqrt(3))/(2-sqrt(3))=a+bsqrt(3)