Home
Class 14
MATHS
The value of 3 + (1)/(sqrt(3)) + (1)/(3 ...

The value of `3 + (1)/(sqrt(3)) + (1)/(3 + sqrt(3)) +(1)/(sqrt(3)-3)` is

A

`3 + sqrt(3)`

B

`3`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(3 + \frac{1}{\sqrt{3}} + \frac{1}{3 + \sqrt{3}} + \frac{1}{\sqrt{3} - 3}\), we will break it down step by step. ### Step 1: Simplifying the expression We start with the original expression: \[ 3 + \frac{1}{\sqrt{3}} + \frac{1}{3 + \sqrt{3}} + \frac{1}{\sqrt{3} - 3} \] ### Step 2: Simplifying \(\frac{1}{3 + \sqrt{3}}\) To simplify \(\frac{1}{3 + \sqrt{3}}\), we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{3 + \sqrt{3}} \cdot \frac{3 - \sqrt{3}}{3 - \sqrt{3}} = \frac{3 - \sqrt{3}}{(3 + \sqrt{3})(3 - \sqrt{3})} \] Calculating the denominator: \[ (3 + \sqrt{3})(3 - \sqrt{3}) = 9 - 3 = 6 \] Thus, \[ \frac{1}{3 + \sqrt{3}} = \frac{3 - \sqrt{3}}{6} \] ### Step 3: Simplifying \(\frac{1}{\sqrt{3} - 3}\) Similarly, we simplify \(\frac{1}{\sqrt{3} - 3}\) by multiplying by the conjugate: \[ \frac{1}{\sqrt{3} - 3} \cdot \frac{\sqrt{3} + 3}{\sqrt{3} + 3} = \frac{\sqrt{3} + 3}{(\sqrt{3} - 3)(\sqrt{3} + 3)} \] Calculating the denominator: \[ (\sqrt{3} - 3)(\sqrt{3} + 3) = 3 - 9 = -6 \] Thus, \[ \frac{1}{\sqrt{3} - 3} = \frac{\sqrt{3} + 3}{-6} = -\frac{\sqrt{3} + 3}{6} \] ### Step 4: Combining all parts Now we substitute back into the expression: \[ 3 + \frac{1}{\sqrt{3}} + \frac{3 - \sqrt{3}}{6} - \frac{\sqrt{3} + 3}{6} \] Combining the last two fractions: \[ \frac{3 - \sqrt{3} - \sqrt{3} - 3}{6} = \frac{-2\sqrt{3}}{6} = -\frac{\sqrt{3}}{3} \] So the expression now looks like: \[ 3 + \frac{1}{\sqrt{3}} - \frac{\sqrt{3}}{3} \] ### Step 5: Finding a common denominator To combine \(\frac{1}{\sqrt{3}}\) and \(-\frac{\sqrt{3}}{3}\), we can express \(\frac{1}{\sqrt{3}}\) with a common denominator: \[ \frac{1}{\sqrt{3}} = \frac{3}{3\sqrt{3}} \quad \text{and} \quad -\frac{\sqrt{3}}{3} = -\frac{\sqrt{3}}{3} \] Now, we can combine: \[ 3 + \left(\frac{3 - \sqrt{3}}{3\sqrt{3}}\right) \] ### Step 6: Final simplification Now we can rewrite \(3\) as \(\frac{9\sqrt{3}}{3\sqrt{3}}\): \[ \frac{9\sqrt{3}}{3\sqrt{3}} + \frac{3 - \sqrt{3}}{3\sqrt{3}} = \frac{9\sqrt{3} + 3 - \sqrt{3}}{3\sqrt{3}} = \frac{(9 - 1)\sqrt{3} + 3}{3\sqrt{3}} = \frac{8\sqrt{3} + 3}{3\sqrt{3}} \] ### Step 7: Conclusion After simplifying, we find that the value of the entire expression is: \[ 3 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (1)/(2+sqrt(3))+(1)/(2-sqrt(3))

Find the sum: 3+(1)/(sqrt(3))+(1)/(3+sqrt(3))-(1)/(3-sqrt(3))

(sqrt(3)-1)/(sqrt(3)+1)xx(sqrt(3)-1)/(sqrt(3)-1)

The value of (2 + sqrt(3))/(2- sqrt(3)) + (2- sqrt(3))/(2 + sqrt(3)) + ( sqrt(3) + 1)/(sqrt(3) -1) is

Find the value of (1)/(1+sqrt(3))+(1)/(sqrt(3)+sqrt(5))+...+(1)/(sqrt(23)+sqrt(25))

the value of 3(1)/(sqrt(2)+1)+(1)/(sqrt(3)+sqrt(2))+(1)/(sqrt(4)+sqrt(3))+.........+(1)/(sqrt(16)+sqrt(15)) is