Home
Class 14
MATHS
sqrt(6 + sqrt(6 + sqrt(6 ) ) ) ?...

`sqrt(6 + sqrt(6 + sqrt(6 ) ) )` ?

A

2.3

B

3

C

6

D

6.3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{6 + \sqrt{6 + \sqrt{6}}} \), we can follow these steps: ### Step 1: Define the Expression Let \( x = \sqrt{6 + \sqrt{6 + \sqrt{6}}} \). ### Step 2: Square Both Sides To eliminate the outer square root, we square both sides: \[ x^2 = 6 + \sqrt{6 + \sqrt{6}} \] ### Step 3: Isolate the Inner Square Root Next, we isolate the inner square root: \[ \sqrt{6 + \sqrt{6}} = x^2 - 6 \] ### Step 4: Square Again Now, we square both sides again to eliminate the square root: \[ 6 + \sqrt{6} = (x^2 - 6)^2 \] ### Step 5: Expand the Right Side Expanding the right side: \[ 6 + \sqrt{6} = x^4 - 12x^2 + 36 \] ### Step 6: Rearrange the Equation Rearranging gives us: \[ x^4 - 12x^2 + 30 - \sqrt{6} = 0 \] ### Step 7: Approximate Values To find \( x \), we can estimate \( \sqrt{6} \approx 2.45 \), so we can simplify our calculations. ### Step 8: Estimate \( x \) We can try some values for \( x \): - If \( x = 3 \): \[ 3^2 = 9 \Rightarrow 6 + \sqrt{6 + \sqrt{6}} = 9 \Rightarrow \sqrt{6 + \sqrt{6}} = 3 \] This means: \[ 6 + \sqrt{6} = 9 \Rightarrow \sqrt{6} = 3 \] This is not true, but we can check if \( x = 3 \) works in the original equation. ### Step 9: Check \( x = 3 \) Substituting \( x = 3 \) back into the original equation: \[ \sqrt{6 + \sqrt{6 + \sqrt{6}}} = 3 \] Calculating: \[ \sqrt{6 + \sqrt{6 + \sqrt{6}}} = \sqrt{6 + \sqrt{6 + 2.45}} \approx \sqrt{6 + 3} = \sqrt{9} = 3 \] ### Conclusion Thus, the value of \( \sqrt{6 + \sqrt{6 + \sqrt{6}}} \) is \( 3 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

(6 + sqrt6)(6 - sqrt6)

(2 + sqrt6 )(4 + sqrt6)

(5 + sqrt6)/(5 - sqrt6)

(6+sqrt(6))(6-sqrt(6))

Solve : 2/ sqrt(6) times 3/ sqrt(6) + 2/sqrt(6)

Evaluate : ( sqrt(3) - sqrt(6) ) / ( sqrt(3) + sqrt(6))

Evaluate : ( sqrt(3) - sqrt(6) ) / ( sqrt(3) + sqrt(6))

Evaluate : ( sqrt(3) - sqrt(6) ) / ( sqrt(3) + sqrt(6))

Evaluate : ( sqrt(3) - sqrt(6)) times ( sqrt(3) + sqrt(6))

Given that: sqrt(3) = 1.732, (sqrt(6) + sqrt(2)) / (sqrt(6)-sqrt(2)) is equal to: