Home
Class 14
MATHS
The value of (2 (1)/(3) - 1(2)/(11) )/(...

The value of ` (2 (1)/(3) - 1(2)/(11) )/(3 + (1)/(3 + (1)/(3 + 1/3) ))`

A

`38/109`

B

`109/38`

C

1

D

`116/109`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{2 \frac{1}{3} - 1 \frac{2}{11}}{3 + \frac{1}{3 + \frac{1}{3 + \frac{1}{3}}}} \), we will break it down step by step. ### Step 1: Convert mixed numbers to improper fractions The numerator consists of two mixed numbers: \( 2 \frac{1}{3} \) and \( 1 \frac{2}{11} \). 1. Convert \( 2 \frac{1}{3} \): \[ 2 \frac{1}{3} = 2 + \frac{1}{3} = \frac{6}{3} + \frac{1}{3} = \frac{7}{3} \] 2. Convert \( 1 \frac{2}{11} \): \[ 1 \frac{2}{11} = 1 + \frac{2}{11} = \frac{11}{11} + \frac{2}{11} = \frac{13}{11} \] ### Step 2: Substitute back into the numerator Now, substitute these values back into the numerator: \[ \frac{7}{3} - \frac{13}{11} \] ### Step 3: Find a common denominator for the numerator The least common multiple (LCM) of 3 and 11 is 33. We will convert both fractions: \[ \frac{7}{3} = \frac{7 \times 11}{3 \times 11} = \frac{77}{33} \] \[ \frac{13}{11} = \frac{13 \times 3}{11 \times 3} = \frac{39}{33} \] ### Step 4: Subtract the fractions Now, subtract the two fractions: \[ \frac{77}{33} - \frac{39}{33} = \frac{77 - 39}{33} = \frac{38}{33} \] ### Step 5: Simplify the denominator Next, we simplify the denominator \( 3 + \frac{1}{3 + \frac{1}{3 + \frac{1}{3}}} \). 1. Start from the innermost fraction: \[ 3 + \frac{1}{3} = \frac{9}{3} + \frac{1}{3} = \frac{10}{3} \] 2. Now substitute this back into the next layer: \[ 3 + \frac{1}{\frac{10}{3}} = 3 + \frac{3}{10} = \frac{30}{10} + \frac{3}{10} = \frac{33}{10} \] 3. Finally, substitute this back into the outer layer: \[ 3 + \frac{1}{\frac{33}{10}} = 3 + \frac{10}{33} = \frac{99}{33} + \frac{10}{33} = \frac{109}{33} \] ### Step 6: Combine the results Now, we have: \[ \frac{\frac{38}{33}}{\frac{109}{33}} \] ### Step 7: Simplify the fraction Dividing by a fraction is the same as multiplying by its reciprocal: \[ \frac{38}{33} \times \frac{33}{109} = \frac{38}{109} \] ### Final Answer Thus, the value of the given expression is: \[ \frac{38}{109} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (2(1)/(2) - 1(2)/(11))/(3 + (1)/(3 + (1)/(3 + (1 )/(3 ))))

The value of [2-3(2-3)^(-1)]^(-1) is :

the value of [2-3(2-3)^(-1)]^(-1) is

3(7)/(11)+7(3)/(11)xx1(1)/(2)=?

(7)/(11)-"[1 (1)/(2)-[(1)/(2)+(1(3)/(4)-(1)/(2)+(1)/(3))]]