Home
Class 14
MATHS
The last digit of (1001)^2008 + 1002 is...

The last digit of `(1001)^2008 + 1002` is

A

0

B

3

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To find the last digit of the expression \( (1001)^{2008} + 1002 \), we can follow these steps: ### Step 1: Identify the last digit of \( 1001 \) The last digit of \( 1001 \) is \( 1 \). **Hint:** When looking for the last digit of a number, focus only on the unit place digit. ### Step 2: Calculate the last digit of \( (1001)^{2008} \) Since the last digit of \( 1001 \) is \( 1 \), we can simplify our calculation to finding the last digit of \( 1^{2008} \). Any power of \( 1 \) is \( 1 \): \[ 1^{2008} = 1 \] **Hint:** Any number raised to any power that ends in \( 1 \) will always result in \( 1 \). ### Step 3: Add the last digit of \( (1001)^{2008} \) to the last digit of \( 1002 \) Now, we need to find the last digit of \( 1002 \). The last digit of \( 1002 \) is \( 2 \). Next, we add the last digits we found: \[ 1 + 2 = 3 \] **Hint:** When adding the last digits, ensure you only consider the unit place of the sum. ### Step 4: Determine the last digit of the final result The last digit of \( (1001)^{2008} + 1002 \) is \( 3 \). **Final Answer:** The last digit is \( 3 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The last digit of 7^(2003) is

The last two digits of 3^(400) is

The last digit in 3^(6) is

The last digit of 2137^(753) is

Last digit in 13^(2003)

The last digit of 9!+3^(9966) is :