Home
Class 14
MATHS
If 9 sqrtx = sqrt12 + sqrt147 , then x =...

If `9 sqrtx = sqrt12 + sqrt147` , then x = ? S

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 9 \sqrt{x} = \sqrt{12} + \sqrt{147} \), we will follow these steps: ### Step 1: Simplify the right-hand side First, we need to simplify \( \sqrt{12} \) and \( \sqrt{147} \). - \( \sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3} \) - \( \sqrt{147} = \sqrt{49 \times 3} = \sqrt{49} \cdot \sqrt{3} = 7\sqrt{3} \) Now, we can rewrite the equation: \[ 9 \sqrt{x} = 2\sqrt{3} + 7\sqrt{3} \] ### Step 2: Combine like terms Next, we combine the terms on the right-hand side: \[ 2\sqrt{3} + 7\sqrt{3} = (2 + 7)\sqrt{3} = 9\sqrt{3} \] Now the equation becomes: \[ 9 \sqrt{x} = 9\sqrt{3} \] ### Step 3: Divide both sides by 9 To isolate \( \sqrt{x} \), we divide both sides of the equation by 9: \[ \sqrt{x} = \sqrt{3} \] ### Step 4: Square both sides Next, we square both sides to solve for \( x \): \[ x = (\sqrt{3})^2 \] \[ x = 3 \] ### Conclusion Thus, the value of \( x \) is \( 3 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If 9sqrtxx = sqrt12 + sqrt147 , then xx is equal to

y = sqrt(2 -sqrtx)

y = sqrt(1+sqrtx)

If sqrt(19-4sqrt(x))=sqrt(12)-sqrt(7), then x=..

If f (x) = x (sqrtx+sqrt((x+1)) , then