Home
Class 14
MATHS
If sqrt2 = 1.4142 , find the value of 2s...

If `sqrt2 = 1.4142` , find the value of `2sqrt2 + sqrt2 + (1)/(2 + sqrt2) + (1)/(sqrt2 - 2)`

A

1.4144

B

2.8284

C

28.284

D

2.4142

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 2\sqrt{2} + \sqrt{2} + \frac{1}{2 + \sqrt{2}} + \frac{1}{\sqrt{2} - 2} \), we will follow these steps: ### Step 1: Combine like terms First, we can combine the terms \( 2\sqrt{2} + \sqrt{2} \): \[ 2\sqrt{2} + \sqrt{2} = 3\sqrt{2} \] ### Step 2: Simplify the fractions Next, we will simplify the fractions \( \frac{1}{2 + \sqrt{2}} \) and \( \frac{1}{\sqrt{2} - 2} \). #### For \( \frac{1}{2 + \sqrt{2}} \): To simplify this, we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{2 + \sqrt{2}} \cdot \frac{2 - \sqrt{2}}{2 - \sqrt{2}} = \frac{2 - \sqrt{2}}{(2 + \sqrt{2})(2 - \sqrt{2})} \] Calculating the denominator: \[ (2 + \sqrt{2})(2 - \sqrt{2}) = 2^2 - (\sqrt{2})^2 = 4 - 2 = 2 \] Thus, \[ \frac{1}{2 + \sqrt{2}} = \frac{2 - \sqrt{2}}{2} = 1 - \frac{\sqrt{2}}{2} \] #### For \( \frac{1}{\sqrt{2} - 2} \): Similarly, we multiply by the conjugate: \[ \frac{1}{\sqrt{2} - 2} \cdot \frac{\sqrt{2} + 2}{\sqrt{2} + 2} = \frac{\sqrt{2} + 2}{(\sqrt{2} - 2)(\sqrt{2} + 2)} \] Calculating the denominator: \[ (\sqrt{2} - 2)(\sqrt{2} + 2) = (\sqrt{2})^2 - 2^2 = 2 - 4 = -2 \] Thus, \[ \frac{1}{\sqrt{2} - 2} = -\frac{\sqrt{2} + 2}{2} = -\frac{\sqrt{2}}{2} - 1 \] ### Step 3: Combine all parts Now we can combine all the parts: \[ 3\sqrt{2} + \left(1 - \frac{\sqrt{2}}{2}\right) + \left(-\frac{\sqrt{2}}{2} - 1\right) \] This simplifies to: \[ 3\sqrt{2} + 1 - \frac{\sqrt{2}}{2} - 1 - \frac{\sqrt{2}}{2} \] The \( +1 \) and \( -1 \) cancel out: \[ 3\sqrt{2} - \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = 3\sqrt{2} - \sqrt{2} = 2\sqrt{2} \] ### Step 4: Substitute the value of \( \sqrt{2} \) Now substitute \( \sqrt{2} = 1.4142 \): \[ 2\sqrt{2} = 2 \times 1.4142 = 2.8284 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{2.8284} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt2=1.4142 then the value of (7)/(4+sqrt2)

If sqrt(2)=1.4142, find the value of (sqrt(2))/((2+sqrt(2)))

if sqrt(2)=1.414, find the value of (1)/(sqrt(2)+1)

If sqrt(2)=1.414 , then find the value of (1)/(2+sqrt(2))