Home
Class 14
MATHS
If x:y=5:6, then (3x^2 - 2y^2) : (y^2 - ...

If x:y=5:6, then `(3x^2 - 2y^2) : (y^2 - x^2)` is

A

`7:6`

B

`11:3`

C

`3:11`

D

`6:7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( (3x^2 - 2y^2) : (y^2 - x^2) \) given that \( x:y = 5:6 \). ### Step-by-Step Solution: 1. **Express x in terms of y**: Since \( x:y = 5:6 \), we can express \( x \) in terms of \( y \): \[ x = \frac{5}{6}y \] 2. **Substitute x in the expression**: We need to substitute \( x \) in the expression \( (3x^2 - 2y^2) : (y^2 - x^2) \): \[ 3x^2 = 3\left(\frac{5}{6}y\right)^2 = 3 \cdot \frac{25}{36}y^2 = \frac{75}{36}y^2 \] \[ x^2 = \left(\frac{5}{6}y\right)^2 = \frac{25}{36}y^2 \] 3. **Calculate \( y^2 - x^2 \)**: Now, we calculate \( y^2 - x^2 \): \[ y^2 - x^2 = y^2 - \frac{25}{36}y^2 = \left(1 - \frac{25}{36}\right)y^2 = \frac{36}{36}y^2 - \frac{25}{36}y^2 = \frac{11}{36}y^2 \] 4. **Substitute into the ratio**: Now substitute these values back into the ratio: \[ (3x^2 - 2y^2) = \left(\frac{75}{36}y^2 - 2y^2\right) = \left(\frac{75}{36}y^2 - \frac{72}{36}y^2\right) = \frac{3}{36}y^2 = \frac{1}{12}y^2 \] 5. **Form the final ratio**: Now we can form the final ratio: \[ \frac{(3x^2 - 2y^2)}{(y^2 - x^2)} = \frac{\frac{1}{12}y^2}{\frac{11}{36}y^2} = \frac{1}{12} \cdot \frac{36}{11} = \frac{3}{11} \] 6. **Final Answer**: Therefore, the ratio \( (3x^2 - 2y^2) : (y^2 - x^2) \) is: \[ \frac{3}{11} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x:y=2:3, find the value of (3x+2y):(2x+5y)

If x/y = 6/5 , find the value of ( x^2 + y^2 ) / ( x^2 - y^2 )

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))

Add: 8x^(2) - 5xy - 3y^(2), 2xy - 6y^(2) + 3x^(2) and y^(2) + xy - 6x^(2)

Add: 4x^(2) - 7xy + 4y^(2) - 3, 5 + 6y^(2) - 8xy + x^(2) and 6 - 2xy + 2x^(2) - 5y^(2)

Find each of the following products: (i) (4x + 5y) (4x - 5y) (ii) (3x^(2) + 2y^(2)) (3x^(2) - 2y^(2))

If x : y = 7 : 5, then what is ( 5x-2y):(3x+2y) equal to ?

{:("Column" A ,, "Column" B), ((3x^(2) - 5)- (2x^(2) - 5 + y^(2)) ,, (a) x^(2) + xy + y^(2)) , (9x^(2) - 16y^(2) ,, (b) 2) , ((x^(3) - y^(3))/(x-y) ,, (c) (9x + 16y) (9x - 16y)) , ("The degree of " (x + 2) (x+3) ,, (d) x^(2) - y^(2)) , (,, (e) 1) , (,, (f) (3x + 4y) (3x - 4y)):}

{:(3x - y = 2),(6x + 2y = 4):}