Home
Class 14
MATHS
In triangle ABC, angleBAC = 75^@ , angle...

In triangle ABC, `angleBAC = 75^@ , angleABC = 45^@ , bar(BC) ` is produced to D. If `angleACD` =x , then `x/3%` of `60^@` is

A

`30^@`

B

`48^@`

C

`15^@`

D

`24^@`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) in triangle \( ABC \) where \( \angle BAC = 75^\circ \) and \( \angle ABC = 45^\circ \). Then we will calculate \( \frac{x}{3\%} \) of \( 60^\circ \). ### Step-by-Step Solution: 1. **Identify the Angles in Triangle ABC**: - Given: - \( \angle BAC = 75^\circ \) - \( \angle ABC = 45^\circ \) 2. **Calculate the Third Angle \( \angle ACB \)**: - The sum of angles in a triangle is \( 180^\circ \). - Therefore, we can find \( \angle ACB \): \[ \angle ACB = 180^\circ - \angle BAC - \angle ABC \] \[ \angle ACB = 180^\circ - 75^\circ - 45^\circ \] \[ \angle ACB = 180^\circ - 120^\circ = 60^\circ \] 3. **Determine the External Angle \( \angle ACD \)**: - Since \( BC \) is extended to point \( D \), \( \angle ACD \) (denoted as \( x \)) is an external angle to triangle \( ABC \). - The property of external angles states that: \[ \angle ACD = \angle BAC + \angle ABC \] \[ x = 75^\circ + 45^\circ \] \[ x = 120^\circ \] 4. **Calculate \( \frac{x}{3\%} \) of \( 60^\circ \)**: - First, we need to find \( 3\% \) of \( 60^\circ \): \[ 3\% \text{ of } 60^\circ = \frac{3}{100} \times 60 = \frac{180}{100} = 1.8^\circ \] - Now, we calculate \( \frac{x}{3\%} \): \[ \frac{x}{3\%} = \frac{120^\circ}{1.8^\circ} \] \[ = \frac{120}{1.8} = \frac{1200}{18} = \frac{200}{3} \approx 66.67 \] 5. **Final Calculation**: - Since the question asks for \( \frac{x}{3\%} \) of \( 60^\circ \), we can also express this as: \[ \frac{x}{3\%} = \frac{120^\circ}{1.8^\circ} \approx 66.67 \] ### Conclusion: The answer to the question is approximately \( 66.67 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC, angleBAC=75^(@), angleABC=45^(@) , BC is extended to D. If angleACD=x^(@) then 60^(@) of (x)/(3)% is?

If in a Delta ABC, angle A = 45^(@) , angle B = 75^(@), then

In a triangle ABC,angleABC=75^(@)andangleACB=(pi^(c ))/(4) . The circular measure of angleBAC is

In triangleABC , if angleA=45^(@), angleB=60^(@), angleC=75^(@) , then a:b:c =

In a triangle ABC, AB=BC and angleA=60^(@) . Find angleB .

In DeltaABC , AC = BC and angleABC = 50^(@) , the side BC is produced to D so that BC = CD then the value of angleBAD is

In a triangle ABC, if a = 2, B=60^(@)andC=75^(@) , then b =