Home
Class 14
MATHS
The value of sec theta((1+ sin theta)/(c...

The value of `sec theta((1+ sin theta)/(cos theta) + (cos theta)/(1+sin theta))- 2 tan^2 theta` is

A

4

B

1

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sec \theta \left( \frac{1 + \sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta} \right) - 2 \tan^2 \theta \), we will break it down step by step. ### Step 1: Rewrite the expression We start with the expression: \[ \sec \theta \left( \frac{1 + \sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta} \right) - 2 \tan^2 \theta \] Recall that \( \sec \theta = \frac{1}{\cos \theta} \) and \( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \). ### Step 2: Simplify the first part Let's simplify the term inside the parentheses: \[ \frac{1 + \sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta} \] Finding a common denominator: \[ = \frac{(1 + \sin \theta)^2 + \cos^2 \theta}{\cos \theta (1 + \sin \theta)} \] ### Step 3: Expand the numerator Now, we expand \( (1 + \sin \theta)^2 \): \[ (1 + \sin \theta)^2 = 1 + 2\sin \theta + \sin^2 \theta \] Thus, the numerator becomes: \[ 1 + 2\sin \theta + \sin^2 \theta + \cos^2 \theta \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ = 1 + 2\sin \theta + 1 = 2 + 2\sin \theta \] ### Step 4: Substitute back into the expression Now we have: \[ \frac{2 + 2\sin \theta}{\cos \theta (1 + \sin \theta)} \] This simplifies to: \[ \frac{2(1 + \sin \theta)}{\cos \theta (1 + \sin \theta)} = \frac{2}{\cos \theta} = 2 \sec \theta \] ### Step 5: Substitute into the original expression Now substituting back into the original expression: \[ \sec \theta \left( 2 \sec \theta \right) - 2 \tan^2 \theta \] This simplifies to: \[ 2 \sec^2 \theta - 2 \tan^2 \theta \] ### Step 6: Use the identity We know that \( \sec^2 \theta = 1 + \tan^2 \theta \): \[ 2 \sec^2 \theta = 2(1 + \tan^2 \theta) = 2 + 2 \tan^2 \theta \] Thus, we have: \[ 2 + 2 \tan^2 \theta - 2 \tan^2 \theta = 2 \] ### Final Answer The value of the expression is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1-sin theta)/(cos theta)-(cos theta)/(1+sin theta)=2tan theta

(cos theta-sin theta) / (cos theta + sin theta) = sec2 theta-tan2 theta

(1 + sin theta-cos theta) / (1 + sin theta + cos theta) = (tan theta) / (2)

Value of sec theta(1-sin theta)(sin theta+tan theta) is

Value of sec theta(1-sin theta)(sin theta+tan theta) is

Value of sec theta(1-sin theta)(sin theta+tan theta) is

(sin theta tan theta)/(1-cos theta)=1+sec theta

Prove that sec theta + tan theta = (cos theta)/(1-sin theta)

Prove :(cos theta)/(1+sin theta)+(cos theta)/(1-sin theta)=2sec theta