Home
Class 14
MATHS
If a sin theta + b cos theta = c then th...

If a `sin theta + b cos theta = c` then the value of a `cos theta -b sin theta` is :

A

`pmsqrt(-a^2 + b^2 + c^2)`

B

`pm sqrt(a^2 + b^2 -c^2)`

C

`pm sqrt(a^2 - b^2 - c^2)`

D

`pm sqrt(a^2 - b^2 + c^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \cos \theta - b \sin \theta \) given that \( a \sin \theta + b \cos \theta = c \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ a \sin \theta + b \cos \theta = c \] Let's denote this as Equation (1). 2. **Let \( x = a \cos \theta - b \sin \theta \):** We need to find the value of \( x \). Let's denote this as Equation (2). 3. **Square both equations:** - Square Equation (1): \[ (a \sin \theta + b \cos \theta)^2 = c^2 \] Expanding this gives: \[ a^2 \sin^2 \theta + 2ab \sin \theta \cos \theta + b^2 \cos^2 \theta = c^2 \] This is Equation (3). - Square Equation (2): \[ (a \cos \theta - b \sin \theta)^2 = x^2 \] Expanding this gives: \[ a^2 \cos^2 \theta - 2ab \sin \theta \cos \theta + b^2 \sin^2 \theta = x^2 \] This is Equation (4). 4. **Add Equations (3) and (4):** \[ (a^2 \sin^2 \theta + b^2 \cos^2 \theta + 2ab \sin \theta \cos \theta) + (a^2 \cos^2 \theta + b^2 \sin^2 \theta - 2ab \sin \theta \cos \theta) = c^2 + x^2 \] Simplifying this gives: \[ a^2 (\sin^2 \theta + \cos^2 \theta) + b^2 (\sin^2 \theta + \cos^2 \theta) = c^2 + x^2 \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \), we have: \[ a^2 + b^2 = c^2 + x^2 \] 5. **Rearranging the equation:** \[ x^2 = a^2 + b^2 - c^2 \] 6. **Taking the square root:** \[ x = \sqrt{a^2 + b^2 - c^2} \quad \text{or} \quad x = -\sqrt{a^2 + b^2 - c^2} \] ### Final Result: Thus, the value of \( a \cos \theta - b \sin \theta \) is: \[ x = \pm \sqrt{a^2 + b^2 - c^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a cos theta + b sin theta = c, then what is the value of a sin theta - b cos theta ?

If cos theta + sin theta =sqrt2 cos theta , then the value of (cos theta -sin theta)/(sin theta) is

If sin theta + cos theta =1, the value of sin theta cos theta is

If a cos theta-b sin theta=c, then find the value of a sin theta+b cos theta

If a cos theta-b sin theta=c, then find the value of a sin theta+b cos theta

The extreme values of a sin theta-b cos theta

sin theta+cos theta=sqrt(3)cos theta then find the value of cos theta-sin theta is

If (sin theta + cos theta)/(sin theta - cos theta)=3 , then the value of sin^(4)theta - cos^(4)theta is: