Home
Class 14
MATHS
If x = a sec theta cos phi, y = b sec th...

If `x = a sec theta cos phi, y = b sec theta sin phi, z = c tan theta`, then, the value of `x^2 /a^2 + y^2/b^2 -z^2/c^2` is :

A

1

B

4

C

9

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} \) given the definitions of \( x \), \( y \), and \( z \): 1. **Given Equations**: \[ x = a \sec \theta \cos \phi \] \[ y = b \sec \theta \sin \phi \] \[ z = c \tan \theta \] 2. **Calculate \( \frac{x^2}{a^2} \)**: \[ \frac{x^2}{a^2} = \frac{(a \sec \theta \cos \phi)^2}{a^2} = \sec^2 \theta \cos^2 \phi \] 3. **Calculate \( \frac{y^2}{b^2} \)**: \[ \frac{y^2}{b^2} = \frac{(b \sec \theta \sin \phi)^2}{b^2} = \sec^2 \theta \sin^2 \phi \] 4. **Calculate \( \frac{z^2}{c^2} \)**: \[ \frac{z^2}{c^2} = \frac{(c \tan \theta)^2}{c^2} = \tan^2 \theta \] 5. **Combine the results**: Now we substitute these results into the original expression: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = \sec^2 \theta \cos^2 \phi + \sec^2 \theta \sin^2 \phi - \tan^2 \theta \] 6. **Factor out \( \sec^2 \theta \)**: \[ = \sec^2 \theta (\cos^2 \phi + \sin^2 \phi) - \tan^2 \theta \] 7. **Use the Pythagorean identity**: We know that \( \cos^2 \phi + \sin^2 \phi = 1 \), so: \[ = \sec^2 \theta \cdot 1 - \tan^2 \theta \] 8. **Use the identity \( \sec^2 \theta - \tan^2 \theta = 1 \)**: \[ = 1 \] Thus, the final value of \( \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} \) is \( 1 \). ### Final Answer: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = a sec theta cos phi, y = b sec thetasin phi and z = c tan theta , then the value of x^2/a^2 + y^2/b^2 -z^2 /c^2 is

Find the blanks. (i) If x=a cos^(3)theta,y=b sin^(3)theta then ((x)/(a))^(2/3)+((y)/(b))^(2/3)=ul(P) (ii) if x=a sec theta cos phi,y=b sec theta sin phi and z=c tan theta then (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=ul(Q) (iii) If cos A+cos^(2)A=1 ,then sin^(2)A+sin^(4)A=ul(R)

If x=a sec theta cos varphi,y=b sec theta sin varphi and z=c tan theta, then (x^(2))/(a^(2))+(y^(2))/(b^(2))=(z^(2))/(c^(2)) (b) 1-(z^(2))/(c^(2))(c)(z^(2))/(c^(2))-1(d)1+(z^(2))/(c^(2))

If x=a sec theta cos varphi,quad y=b sec theta sin varphi and z=c tan theta, show that (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=1

If x = rsin theta*cos phi , y = rsin theta*sin phi and z = rcos theta then prove that x^2 + y^2 + z^2 = r^2

If x = r cos theta cos phi, y = r cos theta sin phiz = r sin theta, then x ^ (2) + y ^ (2) + z ^ (2) = (i) r ^ (2) (ii ) y ^ (2) (iii) x ^ (2) (iv) z ^ (2)

if x = a sec theta + b tan theta y = b sec theta + a tan theta then x^(2) - y^(2) is equal to

If cos theta+cos phi=a and sin theta - sin phi=b , then: 2cos(theta + phi) =

If x=gamma sin theta cos phi, y=gamma sin theta sin phi, z =gamma cos theta , what is the eliminant of theta and phi ?