Home
Class 14
MATHS
The square root of 33 - 4 sqrt35 is :...

The square root of `33 - 4 sqrt35` is :

A

`pm (2 sqrt7 + sqrt5)`

B

`pm (sqrt7 + 2 sqrt5)`

C

`+(sqrt7 - 2sqrt5)`

D

`pm (2sqrt7 - sqrt 5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the square root of \( 33 - 4\sqrt{35} \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ 33 - 4\sqrt{35} \] We can express \( 33 \) in a different form to facilitate the square root calculation. ### Step 2: Identify a Suitable Form Notice that: \[ 4\sqrt{35} = 4 \cdot \sqrt{7 \cdot 5} = 2 \cdot 2 \cdot \sqrt{7} \cdot \sqrt{5} \] We can rewrite \( 33 \) as: \[ 33 = (2\sqrt{7})^2 + (\sqrt{5})^2 \] Thus, we can express \( 33 - 4\sqrt{35} \) as: \[ (2\sqrt{7})^2 + (\sqrt{5})^2 - 2 \cdot (2\sqrt{7}) \cdot (\sqrt{5}) \] ### Step 3: Recognize the Perfect Square The expression now resembles the expansion of a perfect square: \[ a^2 + b^2 - 2ab = (a - b)^2 \] where \( a = 2\sqrt{7} \) and \( b = \sqrt{5} \). Therefore, we can write: \[ 33 - 4\sqrt{35} = (2\sqrt{7} - \sqrt{5})^2 \] ### Step 4: Take the Square Root Now, we take the square root of both sides: \[ \sqrt{33 - 4\sqrt{35}} = \sqrt{(2\sqrt{7} - \sqrt{5})^2} \] This simplifies to: \[ 2\sqrt{7} - \sqrt{5} \] However, we must remember that taking the square root can yield both positive and negative values: \[ \sqrt{33 - 4\sqrt{35}} = \pm (2\sqrt{7} - \sqrt{5}) \] ### Final Answer Thus, the square root of \( 33 - 4\sqrt{35} \) is: \[ 2\sqrt{7} - \sqrt{5} \quad \text{or} \quad -(2\sqrt{7} - \sqrt{5}) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The square root of 3+4i is