Home
Class 14
MATHS
If a^2 + 1 = a, then the value of a^12 ...

If `a^2 + 1 = a`, then the value of `a^12 + a^6 + 1` is :

A

`-3`

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 + 1 = a \) and find the value of \( a^{12} + a^6 + 1 \), we can follow these steps: ### Step 1: Rearrange the equation Start with the given equation: \[ a^2 + 1 = a \] Rearranging gives: \[ a^2 - a + 1 = 0 \] ### Step 2: Solve the quadratic equation We can use the quadratic formula to solve for \( a \): \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -1, c = 1 \): \[ a = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm \sqrt{-3}}{2} \] This gives us: \[ a = \frac{1 \pm i\sqrt{3}}{2} \] ### Step 3: Find \( a^3 \) To find \( a^{12} + a^6 + 1 \), we first need to find \( a^3 \). We can use the original equation: \[ a^2 = a - 1 \] Multiplying both sides by \( a \): \[ a^3 = a \cdot a^2 = a(a - 1) = a^2 - a = (a - 1) - a = -1 \] Thus, we have: \[ a^3 = -1 \] ### Step 4: Calculate \( a^6 \) and \( a^{12} \) Using \( a^3 = -1 \): \[ a^6 = (a^3)^2 = (-1)^2 = 1 \] \[ a^{12} = (a^6)^2 = 1^2 = 1 \] ### Step 5: Substitute into the expression Now we can substitute \( a^{12} \) and \( a^6 \) into the expression \( a^{12} + a^6 + 1 \): \[ a^{12} + a^6 + 1 = 1 + 1 + 1 = 3 \] ### Conclusion Thus, the value of \( a^{12} + a^6 + 1 \) is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a - 1/a = -6 , find the value of a^2 + 1/a^2 = ?

1. Find the value of 2.52/ 1.2

If "16 # 2 = 16 , 12 # 6 = 36 and 6 # 1 = 3" , then find the value of "4 # 4 = ?"