Home
Class 14
MATHS
If a+b+c= 0, then the value of ((a+b)/c ...

If a+b+c= 0, then the value of `((a+b)/c + (b+c)/a + (c+a)/b)`
`((a)/(b+c) + b/(c+a) + c/(a+b))` is :

A

8

B

`-3`

C

9

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given condition \( a + b + c = 0 \). We need to find the value of the expression: \[ \frac{(a+b)}{c} + \frac{(b+c)}{a} + \frac{(c+a)}{b} \quad \text{and} \quad \frac{a}{(b+c)} + \frac{b}{(c+a)} + \frac{c}{(a+b)} \] ### Step 1: Simplify the first expression Using the condition \( a + b + c = 0 \), we can express \( c \), \( a \), and \( b \) in terms of the other variables: - \( c = - (a + b) \) - \( a = - (b + c) \) - \( b = - (c + a) \) Now, substituting these into the first expression: \[ \frac{(a+b)}{c} = \frac{(a+b)}{- (a+b)} = -1 \] \[ \frac{(b+c)}{a} = \frac{(b - (a+b))}{a} = \frac{-a}{a} = -1 \] \[ \frac{(c+a)}{b} = \frac{(- (a+b) + a)}{b} = \frac{-b}{b} = -1 \] Adding these results together: \[ -1 - 1 - 1 = -3 \] ### Step 2: Simplify the second expression Now, we simplify the second expression: \[ \frac{a}{(b+c)} = \frac{a}{-a} = -1 \] \[ \frac{b}{(c+a)} = \frac{b}{-b} = -1 \] \[ \frac{c}{(a+b)} = \frac{- (a+b)}{-(a+b)} = 1 \] Adding these results together: \[ -1 - 1 + 1 = -1 \] ### Step 3: Compare the two results Now we compare the two simplified expressions: 1. The first expression evaluates to \(-3\). 2. The second expression evaluates to \(-1\). Thus, we have: \[ -3 < -1 \] ### Conclusion Therefore, the value of the expression is: \[ \frac{(a+b)}{c} + \frac{(b+c)}{a} + \frac{(c+a)}{b} < \frac{a}{(b+c)} + \frac{b}{(c+a)} + \frac{c}{(a+b)} \] ### Final Answer The final answer is: \[ \text{The value is } -3 < -1. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a b c=0 , then find the value of {(x^a)^b}^c (a)1 (b) a (c)b (d) c

If a + b + c = 0 , then find the value of ( ( a + b ) / c + ( b + c )/a + ( c + a ) / b ) times ( a /( b + c ) + b /( c + a ) + c /( a + b ) ) is :

5.If a.b =b .c=c.a=0 then the value of [a,b,c] is

If a+b+c=0 then find value of -[(a+b)/(c)+(b+c)/(a)+(c+a)/(b)]]]

If a+b+c=0, find the value of (a+b)/(c)-(2b)/(c+a)+(b+c)/(a)

If a+b+c=0 then find value of -{(a+b)/(c)+(b+c)/(a)+(c+a)/(b)}]}